搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缺陷态对Y掺杂BaZrO3的质子导电性的影响

杨义斌 龚宇 刘才林 罗阳明 陈平

引用本文:
Citation:

缺陷态对Y掺杂BaZrO3的质子导电性的影响

杨义斌, 龚宇, 刘才林, 罗阳明, 陈平

Influence of defect states on proton conductivity of Y-doped BaZrO3

Yang Yi-Bin, Gong Yu, Liu Cai-Lin, Luo Yang-Ming, Chen Ping
PDF
导出引用
  • 核能是一种新型能源, 其开发和利用对氢同位素分离和纯化提出了迫切要求. BaZrO3基钙钛矿氧化物是一种有效分离纯化氢同位素的材料, 本文采用高温固相法制备了BaZr1-xYxO3- (0 x 0.3)系列样品, 射线衍射光谱分析表明Y的最大掺杂浓度在0.24-0.26之间. 在600 ℃干燥氢气气氛下, 由电化学阻抗谱测试可知, 掺20 mol%Y 的BaZr1-xYxO3-样品电导率可达 =0.00150 S/m, 较BaZrO3基质材料的电导率高接近两个数量级. 利用热释光谱和发射光谱研究了系列样品缺陷类型, 结果表明BaZrO3基质材料存在两种对质子传导有利的氧空位(Vo..); 当掺入Y 后, 除氧空位之外, 样品还出现了带负电的质子俘获型缺陷YZr', 且 YZr'缺陷的数量随着Y掺杂浓度增加而增多; 同时出现了缺陷陷阱深度变浅导致对质子捕获能力降低的现象, 有利于提高质子导电性. 本文通过发射光谱和热释光谱相结合, 有效地研究了BaZr1-xYxO3-材料的缺陷类型.
    Nuclear energy is a promising new energy to solve energy crisis. Separation and purification of hydrogen isotopes play an important role in the developing and utilizing of nuclear energy. BaZrO3-based oxide is an effective material for the separation and purification of hydrogen isotopes. In this paper, a series of BaZr1-xYxO3- (0 x 0.3) are synthesized by high-temperature solid state reaction method. The raw materials are calcined at 1200 ℃ for 5 h in air. Then the calcined powder is consolidated by an isostatic press and sintered at 1500 ℃ for 48 h in air, using a furnace equipped with aluminum oxide heater. Phase purity and phase structure of the obtained BaZr1-xYxO3- are analyzed by XRD. Results show that the structures of the BaZr1-xYxO3- are consistent with the BaZrO3 diffraction pattern (JCPDS 06-399). The Y ions are already incorporated into the lattice of BaZrO3, and the maximum doping concentration of Y rangs from 0.24 to 0.26. Besides, the proton conductivity of Y-doped BaZrO3 is determined under hydrogen atmosphere by the electrochemical impedance spectroscopy (EIS). Experiments show that the BaZr1-xYxO3- with 20 mol% Y has the highest conductivity of 0.0015 S/cm at 600 ℃ which is higher than that of the BaZrO3 matrix material by two orders of magnitude. As the concentration of Y increases, the strain in the crystal structure of BaZrO3 increases, which may be created by the defect of Y-doped BaZrO3. In order to reveal the mechanism of proton conduction in Y-doped BaZrO3, the influence of defect types on proton conduction is also investigated via photoluminescence (PL) and thermoluminescence (TL). For the BaZrO3 matrix, an asymmetrical broad emission peak at 350 to 650 nm occurs in PL with an excitation light of 334 nm. Analysis of Gaussian decomposition shows that the asymmetrical broad emission peak is created by two kinds of different oxygen vacancies (Vo..), which are beneficial to proton conduction. Interestingly, when BaZrO3 is doped with Y, a new emission peak P1 at 388 nm appears owing to the negatively charged YZr' of proton-trapping-type defects, which is harmful to the proton conduction in general. TL analysis shows that the number of YZr' increases and the depth of the trap reduce, as the Y concentration increases in BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2). Although the YZr' is noxious for the proton conduction, the proton conductivity of BaZr1-xYxO3- (x=0, 0.05, 0.1, 0.2) can be improved via the increase of the release ability of proton trapping as the depth of trap is reduced.
      Corresponding author: Gong Yu, gongy2007@163.com;liucailin2013@163.com ; Liu Cai-Lin, gongy2007@163.com;liucailin2013@163.com
    • Funds: Project supported by the Science and Technology Funds of China Academy of Engineering Physics (Grant No. 2013B0301037).
    [1]

    Tanaka S, Kiyose R 1979 J. Nucl. Sci. Technol. 16 923

    [2]

    Iwahara H, Uchida H, Ono K, Ogaki K 1988 J. Electrochem. Soc. 135 529

    [3]

    Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333

    [4]

    Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T 2001 Sensor Actuat. B: Chem. 73 130

    [5]

    Ma G L, Xu J, Zhang M, Wang X W, Yin J L, Xu J H 2011 Prog. Chem. 23 441 (in Chinese) [马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红 2011 化学进展 23 441]

    [6]

    Mukundan R, Brosha E L, Birdsell S A, Costello A L, Garzon F H, Willms R S 1999 J. Electrochem. Soc. 146 2184

    [7]

    Balachandran U, Lee T H, Chen L, Song S J, Picciolo J J, Dorris S E 2006 Fuel 85 150

    [8]

    Kakuta T, Hirata S, Mori S, Konishi S, Kawamura Y, Nishi M, Ohara Y 2002 Fusion. Sci. Technol. 41 1069

    [9]

    Kato M, Itoh T, Sugai H, Kawamura Y, Hayashi T, Tanase M N M, Matsuzaki T, Ishida K, Nagamine K 2002 Fusion. Sci. Technol. 41 859

    [10]

    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega J C, Grey C P, Haile S M 2013 Nat. Mater. 12 647

    [11]

    Sun W, Zhu Z, Shi Z, Liu W 2013 J. Power Sources 229 95

    [12]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2009 Chem. Mater. 21 2755

    [13]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2010 J. Mater. Chem. A 20 8158

    [14]

    Sun Z, Fabbri E, Bi L, Traversa E 2012 J. Am. Ceram. Soc. 95 627

    [15]

    Cervera R B, Oyama Y, Miyoshi S, Oikawa I, Takamura H, Yamaguchi S 2014 Solid State Ionics 264 1

    [16]

    Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E 2011 Adv. Funct. Mater. 21 158

    [17]

    Bi L, Fabbri E, Sun Z, Traversa E 2011 Solid State Ionics 196 59

    [18]

    Pergolesi D, Fabbri E, D Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Traversa E 2010 Nat. Mater. 9 846

    [19]

    Tong J, Clark D, Bernau L, Sanders M, O'Hayre R 2010 J. Mater. Chem. 20 6333

    [20]

    Han D, Kishida K, Inui H, Uda T 2014 RSC Adv. 4 31589

    [21]

    Cervera R B, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S 2008 Solid State Ionics 179 236

    [22]

    Sahraoui D Z, Mineva T 2013 Solid State Ionics 253 195

    [23]

    Gong Y, Wang Y, Jiang Z, Xu X, Li Y 2009 Mater. Res. Bull. 44 1916

    [24]

    Gong Y, Wang Y, Xu X, Li Y, Jiang Z 2009 J. Electrochem. Soc. 156 J295

    [25]

    Gong Y, Wang Y, Li Y, Xu X 2010 J. Electrochem. Soc. 157 J208

    [26]

    Gong Y, Wang Y, Li Y, Xu X, Zeng W 2011 Opt. Express 19 4310

    [27]

    Gong Y, Wang Y, Xu X, Li Y. Xin S, Shi L 2011 Opt. Mater. 33 1781

    [28]

    Jing Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801

    [29]

    Gong Y, Chen B H, Xing L P, Gu M, Xiong J, Gao X L, Wang Y H 2013 Acta Phys. Sin. 62 153201 (in Chinese) [龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 王育华 2013 物理学报 62 153201]

    [30]

    He X B, Yang T Z, Cai J M, Zhang C D, Guo H M, Shi D X, Shen C M, Gao H J 2008 Chin. Phys. B 17 3444

    [31]

    Bian L, Wang T, Song Z, Liu Z H, Li T X, Liu Q L 2013 Chin. Phys. B 22 077801

    [32]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin. Phys. B 19 077805

    [33]

    Kuz'min A V, Balakireva V B, Plaksin S V, Gorelov V P 2009 Russ. J. Electrochem. 45 1351

    [34]

    Romero V H, de la Rosa E, Salas P, Velazquez-Salazar J J 2012 J. Solid State Chem. 196 243

  • [1]

    Tanaka S, Kiyose R 1979 J. Nucl. Sci. Technol. 16 923

    [2]

    Iwahara H, Uchida H, Ono K, Ogaki K 1988 J. Electrochem. Soc. 135 529

    [3]

    Yajima T, Koide K, Takai H, Fukatsu N, Iwahara H 1995 Solid State Ionics 79 333

    [4]

    Katahira K, Matsumoto H, Iwahara H, Koide K, Iwamoto T 2001 Sensor Actuat. B: Chem. 73 130

    [5]

    Ma G L, Xu J, Zhang M, Wang X W, Yin J L, Xu J H 2011 Prog. Chem. 23 441 (in Chinese) [马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红 2011 化学进展 23 441]

    [6]

    Mukundan R, Brosha E L, Birdsell S A, Costello A L, Garzon F H, Willms R S 1999 J. Electrochem. Soc. 146 2184

    [7]

    Balachandran U, Lee T H, Chen L, Song S J, Picciolo J J, Dorris S E 2006 Fuel 85 150

    [8]

    Kakuta T, Hirata S, Mori S, Konishi S, Kawamura Y, Nishi M, Ohara Y 2002 Fusion. Sci. Technol. 41 1069

    [9]

    Kato M, Itoh T, Sugai H, Kawamura Y, Hayashi T, Tanase M N M, Matsuzaki T, Ishida K, Nagamine K 2002 Fusion. Sci. Technol. 41 859

    [10]

    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega J C, Grey C P, Haile S M 2013 Nat. Mater. 12 647

    [11]

    Sun W, Zhu Z, Shi Z, Liu W 2013 J. Power Sources 229 95

    [12]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2009 Chem. Mater. 21 2755

    [13]

    Yamazaki Y, Hernandez-Sanchez R, Haile S M 2010 J. Mater. Chem. A 20 8158

    [14]

    Sun Z, Fabbri E, Bi L, Traversa E 2012 J. Am. Ceram. Soc. 95 627

    [15]

    Cervera R B, Oyama Y, Miyoshi S, Oikawa I, Takamura H, Yamaguchi S 2014 Solid State Ionics 264 1

    [16]

    Fabbri E, Bi L, Tanaka H, Pergolesi D, Traversa E 2011 Adv. Funct. Mater. 21 158

    [17]

    Bi L, Fabbri E, Sun Z, Traversa E 2011 Solid State Ionics 196 59

    [18]

    Pergolesi D, Fabbri E, D Epifanio A, Di Bartolomeo E, Tebano A, Sanna S, Traversa E 2010 Nat. Mater. 9 846

    [19]

    Tong J, Clark D, Bernau L, Sanders M, O'Hayre R 2010 J. Mater. Chem. 20 6333

    [20]

    Han D, Kishida K, Inui H, Uda T 2014 RSC Adv. 4 31589

    [21]

    Cervera R B, Oyama Y, Miyoshi S, Kobayashi K, Yagi T, Yamaguchi S 2008 Solid State Ionics 179 236

    [22]

    Sahraoui D Z, Mineva T 2013 Solid State Ionics 253 195

    [23]

    Gong Y, Wang Y, Jiang Z, Xu X, Li Y 2009 Mater. Res. Bull. 44 1916

    [24]

    Gong Y, Wang Y, Xu X, Li Y, Jiang Z 2009 J. Electrochem. Soc. 156 J295

    [25]

    Gong Y, Wang Y, Li Y, Xu X 2010 J. Electrochem. Soc. 157 J208

    [26]

    Gong Y, Wang Y, Li Y, Xu X, Zeng W 2011 Opt. Express 19 4310

    [27]

    Gong Y, Wang Y, Xu X, Li Y. Xin S, Shi L 2011 Opt. Mater. 33 1781

    [28]

    Jing Z Q, Wang Y H, Gong Y 2010 Chin. Phys. B 19 027801

    [29]

    Gong Y, Chen B H, Xing L P, Gu M, Xiong J, Gao X L, Wang Y H 2013 Acta Phys. Sin. 62 153201 (in Chinese) [龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 王育华 2013 物理学报 62 153201]

    [30]

    He X B, Yang T Z, Cai J M, Zhang C D, Guo H M, Shi D X, Shen C M, Gao H J 2008 Chin. Phys. B 17 3444

    [31]

    Bian L, Wang T, Song Z, Liu Z H, Li T X, Liu Q L 2013 Chin. Phys. B 22 077801

    [32]

    Zhang B, Lu S Z, Zhang H J, Yang Q H 2010 Chin. Phys. B 19 077805

    [33]

    Kuz'min A V, Balakireva V B, Plaksin S V, Gorelov V P 2009 Russ. J. Electrochem. 45 1351

    [34]

    Romero V H, de la Rosa E, Salas P, Velazquez-Salazar J J 2012 J. Solid State Chem. 196 243

  • [1] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/\begin{document}${\boldsymbol{\beta }}$\end{document}-Bi2O3界面电学性能. 物理学报, 2022, 71(2): 026801. doi: 10.7498/aps.71.20210635
    [2] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [3] 李亚莎, 刘世冲, 刘清东, 夏宇, 胡豁然, 李光竹. 外电场下含有缔合缺陷的ZnO/β-Bi2O3界面电学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210635
    [4] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [5] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [6] 邢兰俊, 常永勤, 邵长景, 王琳, 龙毅. Sn掺杂ZnO薄膜的室温气敏性能及其气敏机理. 物理学报, 2016, 65(9): 097302. doi: 10.7498/aps.65.097302
    [7] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [8] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [9] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [10] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [11] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [12] 牟中飞, 王银海, 胡义华, 吴浩怡, 邓柳咏, 谢伟, 符楚君, 廖臣兴. Y3Al5O12∶Ce3+的余辉和热释光特性. 物理学报, 2011, 60(1): 013201. doi: 10.7498/aps.60.013201
    [13] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [14] 路广霞, 张辉, 张国英, 梁婷, 李丹, 朱圣龙. LiNH2储氢材料中间隙H与掺杂原子交互作用对其释氢性能影响机理研究. 物理学报, 2011, 60(11): 117101. doi: 10.7498/aps.60.117101
    [15] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [16] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [17] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [18] 王 博, 赵有文, 董志远, 邓爱红, 苗杉杉, 杨 俊. 高温退火后非掺杂磷化铟材料的电子辐照缺陷. 物理学报, 2007, 56(3): 1603-1607. doi: 10.7498/aps.56.1603
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  2780
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2015-10-02
  • 刊出日期:  2016-03-05

缺陷态对Y掺杂BaZrO3的质子导电性的影响

    基金项目: 中国工程物理研究院科技发展基金项目(2013B0301037)资助的课题.

摘要: 核能是一种新型能源, 其开发和利用对氢同位素分离和纯化提出了迫切要求. BaZrO3基钙钛矿氧化物是一种有效分离纯化氢同位素的材料, 本文采用高温固相法制备了BaZr1-xYxO3- (0 x 0.3)系列样品, 射线衍射光谱分析表明Y的最大掺杂浓度在0.24-0.26之间. 在600 ℃干燥氢气气氛下, 由电化学阻抗谱测试可知, 掺20 mol%Y 的BaZr1-xYxO3-样品电导率可达 =0.00150 S/m, 较BaZrO3基质材料的电导率高接近两个数量级. 利用热释光谱和发射光谱研究了系列样品缺陷类型, 结果表明BaZrO3基质材料存在两种对质子传导有利的氧空位(Vo..); 当掺入Y 后, 除氧空位之外, 样品还出现了带负电的质子俘获型缺陷YZr', 且 YZr'缺陷的数量随着Y掺杂浓度增加而增多; 同时出现了缺陷陷阱深度变浅导致对质子捕获能力降低的现象, 有利于提高质子导电性. 本文通过发射光谱和热释光谱相结合, 有效地研究了BaZr1-xYxO3-材料的缺陷类型.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回