搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应

王凯 张文华 刘凌云 徐法强

引用本文:
Citation:

VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应

王凯, 张文华, 刘凌云, 徐法强

Healing of oxygen defects on VO2 surface: F4TCNQ adsorption

Wang Kai, Zhang Wen-Hua, Liu Ling-Yun, Xu Fa-Qiang
PDF
导出引用
  • VO2表面氧缺陷的存在对VO2材料具有显著的电子掺杂效应, 极大地影响材料的本征电子结构和相变性质. 通过2, 3, 5, 6-四氟-7, 7', 8, 8'-四氰二甲基对苯醌(F4TCNQ)分子表面吸附反应, 可以有效消除表面氧缺陷及其电子掺杂效应. 利用同步辐射光电子能谱和X射线吸收谱原位研究了修复过程中电子结构的变化以及界面的化学反应, 发现这种方式使得VO2薄膜样品氩刻后得到的V3+失去电子成功地被氧化成原先的V4+, 同时F4TCNQ分子吸附引起电子由衬底向分子层转移, 界面形成带负电荷的分子离子物种. 受电化学性质的制约, F4TCNQ分子吸附反应修复氧缺陷较氧气氛退火更安全有效, 不会引起表面过度氧化形成V2O5.
    Oxygen-defect vacancies that routinely exist in wet production of VO2 material or on the surface of VO2 single crystal after surface treatment have significant influence on the metal-insulator phase transition features mainly due to their enhanced effect of doping on V 3d electronic structure. The removal of the surface oxygen defects is highly desired for investigating the VO2 intrinsic electronic properties. In this work, we propose a charge transfer doping method by using strong electric affinity molecule tetrafluorotetracyanoquinodimethane (F4TCNQ) adsorption rather than the normal thermal annealing in oxygen atmosphere to heal the surface oxygen defects of VO2 crystalline film. The healing effect is probed by the electronic structure evolution at the F4TCNQ/VO2 interface. The VO2 crystalline film is grown by an oxygen plasma assisted molecular beam epitaxy method on an Al2O3(0001) substrate. Surface oxygen defects on VO2 film are produced after a mild sputtering with an ionic energy of 1 keV and a thermal annealing in vacuum at 100 ℃. The influence of F4TCNQ molecule adsorption on the electronic structure of the sputtered VO2 film is studied by using in-situ synchrotron-based photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). XPS and XAS results demonstrate convincingly that V3+ species of sputtered VO2 are oxidized into the V4+ and simultaneously negative molecular ions form at F4TCNQ/VO2 interface resulting from the electron transfer from VO2 to the F4TCNQ layer. The preferred adsorption on surface defects and the strong electron withdrawing function of F4TCNQ molecules may account for the effective elimination of the electron doping effect of oxygen defects on VO2 surface. This charge transfer effect at interface recovers the electronic properties of VO2. Compared with thermal annealing in oxygen environment, the healing of oxygen defects by the molecular adsorption can prevent the surface from over oxidating VO2 into V2O5, which opens a new route to surface defect healing.
      通信作者: 徐法强, fqxu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175172, U1232137, u1332133)和中国科学院合肥大科学中心科学研究项目(批准号: 2015SRG-HSC032)资助的课题.
      Corresponding author: Xu Fa-Qiang, fqxu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175172, U1232137, u1332133) and the Science Research Program of Hefei Scientific Center, Chinese Academy of Sciences (Grant No. 2015SRG-HSC032).
    [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [3]

    Park J H, Coy M J, Kasirga S, Huang C, Fei Z, Hunter S, Cobden H D 2013 Nature 500 431

    [4]

    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X 2013 Sci. Rep. 3 3029

    [5]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst D M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [6]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [7]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [8]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117

    [9]

    Wu Y F, Fan L L, Liu Q H, Chen S, Huang W F, Chen F H, Liao G M, Zou C W, Wu Z Y 2015 Sci. Rep. 5 9328

    [10]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [11]

    Zhou H J, Cao X, Jiang M, Bao S H, Jin P 2014 Laser Photon. Rev. 8 617

    [12]

    Zhou H J, Li J H, Xin Y C, Cao X, Bao S H, Jin P 2015 J. Mater. Chem. C 3 5089

    [13]

    Mendialdua J, Casanova R, Barbaux Y 1995 J. Electron. Spectrosc. Relat. Phenom. 71 249

    [14]

    Yang T H, Nori S, Zhou H, Narayan J 2009 Appl. Phys. Lett. 95 102506

    [15]

    Gupta A, Narayan J, Dutta T 2010 Appl. Phys. Lett. 97 151912

    [16]

    Tashman J W, Lee J H, Paik H, Moyer A W, Misra R, Mundy J A, Spila T, Merz T A, Schubert J, Muller D A, Schiffer P, Schlom D G 2014 Appl. Phys. Lett. 104 063104

    [17]

    Fan L L, Chen S, Wu Y F, Chen F H, Chu W S, Chen X, Zou C W, Wu Z Y 2013 Appl. Phys. Let. 103 131914

    [18]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [19]

    Tsai K Y, Chin T S, Shieh H P D 2003 Jpn. J. Appl. Phys. 42 4480

    [20]

    Yu S, Ahmadi S, Sun C H, Palmgren P, Hennies F, Zuleta M, Gthelid M 2010 J. Phys. Chem. C 114 2315

    [21]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [22]

    Chen W, Qi D C, Gao X Y, Wee A T S 2009 Prog. Surf. Sci. 84 279

    [23]

    Silversmit G, Depla D, Poelman H, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [24]

    Okimura K, Suzuki Y 2011 Jpn. J. Appl. Phys. 50 065803

    [25]

    Zimmermann R, Claessen R, Reinert F, Steiner P, Hufner S 1998 J. Phys.: Condens. Matter 10 5697

    [26]

    Groot F M F, Fuggle J C, Thole B T, Sawatzky G A 1990 Phys. Rev. B 42 5459

    [27]

    Soriano L, Abbate M, Fuggle J C, Jimenez M A, Sanz J M, Mythen C, Padmore H A 1993 Solid State Commun. 87 699

    [28]

    Groot F M F, Grioni M, Fuggle J C, Ghijsen J, Petersen H 1989 Phys. Rev. B 40 5715

    [29]

    Ruzmetov D, Sanjaya D, Ramanathan S 2007 Phys. Rev. B 75 195102

    [30]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov V, Korotin M A, Anisimov V I, Hsieh H H, Lin H J, Chen C T, Khomskii D I, Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [31]

    Fraxedas J, Lee Y J, Jimnez I, Gago R, Nieminen R M, Ordejon P, Canadell E 2003 Phys. Rev. B 68 195115

    [32]

    Tseng T C, Urban C, Wang Y, Otero R, Tait S, Alcami M, Ecija D, Trelka M, Gallego J M, Lin N, Konuma M, Starke U, Nefedow A, Langner A, Woll C, Herranz M A, Martin F, Martin N, Kern K, Miranda R 2010 Nature. Chem. 2 374

    [33]

    Qi D, Chen W, Gao X Y, Wang L, Chen S, Loh P K, Wee T S W 2007 J. Am. Chem. Soc. 129 8084

    [34]

    Koch N, Duhm S, Rabe J P, Vollmer A, Johnson R L 2005 Phys. Rev. Lett. 95 237601

    [35]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377

    [36]

    Le T H, Nafady A, Qu X H, Matin L L, Bond A M 2011 Anal. Chem. 83 6731

  • [1]

    Morin F J 1959 Phys. Rev. Lett. 3 34

    [2]

    Yang Z, Ko C, Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337

    [3]

    Park J H, Coy M J, Kasirga S, Huang C, Fei Z, Hunter S, Cobden H D 2013 Nature 500 431

    [4]

    Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X 2013 Sci. Rep. 3 3029

    [5]

    Driscoll T, Kim H T, Chae B G, Kim B J, Lee Y W, Jokerst D M, Palit S, Smith D R, Ventra M D, Basov D N 2009 Science 325 1518

    [6]

    Stefanovich G, Pergament A, Stefanovich D 2000 J. Phys. : Condens. Matter 12 8837

    [7]

    Strelcov E, Lilach Y, Kolmakov A 2009 Nano Lett. 9 2322

    [8]

    Surnev S, Ramsey M G, Netzer F P 2003 Prog. Surf. Sci. 73 117

    [9]

    Wu Y F, Fan L L, Liu Q H, Chen S, Huang W F, Chen F H, Liao G M, Zou C W, Wu Z Y 2015 Sci. Rep. 5 9328

    [10]

    Kim H T, Chae B G, Youn D H, Kim G, Kang K Y, Lee S J, Kim K, Lim Y S 2005 Appl. Phys. Lett. 86 242101

    [11]

    Zhou H J, Cao X, Jiang M, Bao S H, Jin P 2014 Laser Photon. Rev. 8 617

    [12]

    Zhou H J, Li J H, Xin Y C, Cao X, Bao S H, Jin P 2015 J. Mater. Chem. C 3 5089

    [13]

    Mendialdua J, Casanova R, Barbaux Y 1995 J. Electron. Spectrosc. Relat. Phenom. 71 249

    [14]

    Yang T H, Nori S, Zhou H, Narayan J 2009 Appl. Phys. Lett. 95 102506

    [15]

    Gupta A, Narayan J, Dutta T 2010 Appl. Phys. Lett. 97 151912

    [16]

    Tashman J W, Lee J H, Paik H, Moyer A W, Misra R, Mundy J A, Spila T, Merz T A, Schubert J, Muller D A, Schiffer P, Schlom D G 2014 Appl. Phys. Lett. 104 063104

    [17]

    Fan L L, Chen S, Wu Y F, Chen F H, Chu W S, Chen X, Zou C W, Wu Z Y 2013 Appl. Phys. Let. 103 131914

    [18]

    Tan X G, Yao T, Long R, Sun Z H, Feng Y J, Cheng H, Yuan X, Zhang W Q, Liu Q H, Wu C Z, Xie Y, Wei S Q 2012 Sci. Rep. 2 466

    [19]

    Tsai K Y, Chin T S, Shieh H P D 2003 Jpn. J. Appl. Phys. 42 4480

    [20]

    Yu S, Ahmadi S, Sun C H, Palmgren P, Hennies F, Zuleta M, Gthelid M 2010 J. Phys. Chem. C 114 2315

    [21]

    Gao W, Kahn A 2001 Appl. Phys. Lett. 79 4040

    [22]

    Chen W, Qi D C, Gao X Y, Wee A T S 2009 Prog. Surf. Sci. 84 279

    [23]

    Silversmit G, Depla D, Poelman H, Marin G B, Gryse R D 2004 J. Electron. Spectrosc. Relat. Phenom. 135 167

    [24]

    Okimura K, Suzuki Y 2011 Jpn. J. Appl. Phys. 50 065803

    [25]

    Zimmermann R, Claessen R, Reinert F, Steiner P, Hufner S 1998 J. Phys.: Condens. Matter 10 5697

    [26]

    Groot F M F, Fuggle J C, Thole B T, Sawatzky G A 1990 Phys. Rev. B 42 5459

    [27]

    Soriano L, Abbate M, Fuggle J C, Jimenez M A, Sanz J M, Mythen C, Padmore H A 1993 Solid State Commun. 87 699

    [28]

    Groot F M F, Grioni M, Fuggle J C, Ghijsen J, Petersen H 1989 Phys. Rev. B 40 5715

    [29]

    Ruzmetov D, Sanjaya D, Ramanathan S 2007 Phys. Rev. B 75 195102

    [30]

    Haverkort M W, Hu Z, Tanaka A, Reichelt W, Streltsov V, Korotin M A, Anisimov V I, Hsieh H H, Lin H J, Chen C T, Khomskii D I, Tjeng L H 2005 Phys. Rev. Lett. 95 196404

    [31]

    Fraxedas J, Lee Y J, Jimnez I, Gago R, Nieminen R M, Ordejon P, Canadell E 2003 Phys. Rev. B 68 195115

    [32]

    Tseng T C, Urban C, Wang Y, Otero R, Tait S, Alcami M, Ecija D, Trelka M, Gallego J M, Lin N, Konuma M, Starke U, Nefedow A, Langner A, Woll C, Herranz M A, Martin F, Martin N, Kern K, Miranda R 2010 Nature. Chem. 2 374

    [33]

    Qi D, Chen W, Gao X Y, Wang L, Chen S, Loh P K, Wee T S W 2007 J. Am. Chem. Soc. 129 8084

    [34]

    Koch N, Duhm S, Rabe J P, Vollmer A, Johnson R L 2005 Phys. Rev. Lett. 95 237601

    [35]

    Tian X Q, Xu J B, Wang X M 2010 J. Phys. Chem. B 114 11377

    [36]

    Le T H, Nafady A, Qu X H, Matin L L, Bond A M 2011 Anal. Chem. 83 6731

  • [1] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [2] 佘彦超, 张蔚曦, 王应, 罗开武, 江小蔚. 氧空位缺陷对PbTiO3铁电薄膜漏电流的调控. 物理学报, 2018, 67(18): 187701. doi: 10.7498/aps.67.20181130
    [3] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [4] 张瑶, 汤善治, 李明, 王立超, 高俊祥. 同步辐射中双压电片反射镜的研究现状. 物理学报, 2016, 65(1): 010702. doi: 10.7498/aps.65.010702
    [5] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [6] 李一丁, 张鹏飞, 张辉, 徐宏亮. 电子磁矩对同步辐射频谱的修正. 物理学报, 2013, 62(9): 094103. doi: 10.7498/aps.62.094103
    [7] 邱东鸿, 文岐业, 杨青慧, 陈智, 荆玉兰, 张怀武. 金属Pt薄膜上二氧化钒的制备及其电致相变性能研究. 物理学报, 2013, 62(21): 217201. doi: 10.7498/aps.62.217201
    [8] 孙丹丹, 陈智, 文岐业, 邱东鸿, 赖伟恩, 董凯, 赵碧辉, 张怀武. 二氧化钒薄膜低温制备及其太赫兹调制特性研究. 物理学报, 2013, 62(1): 017202. doi: 10.7498/aps.62.017202
    [9] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [10] 陈伯伦, 杨正华, 曹柱荣, 董建军, 侯立飞, 崔延莉, 江少恩, 易荣清, 李三伟, 刘慎业, 杨家敏. 同步辐射标定平面镜反射率不确定度分析方法研究. 物理学报, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [11] 王巧占, 于润升, 秦秀波, 李玉晓, 王宝义, 贾全杰. 介孔SiO2薄膜孔结构的慢正电子技术表征. 物理学报, 2009, 58(12): 8478-8483. doi: 10.7498/aps.58.8478
    [12] 汪 敏, 岑豫皖, 胡小方, 余晓流, 朱佩平. 同步辐射计算机断层技术光源误差机理分析. 物理学报, 2008, 57(10): 6202-6206. doi: 10.7498/aps.57.6202
    [13] 杨昌平, 陈顺生, 戴 琪, 郭定和, 王 浩. Nd0.67Sr0.33MnOy(y<3.0)中的自旋相关电致电阻效应. 物理学报, 2007, 56(8): 4908-4913. doi: 10.7498/aps.56.4908
    [14] 李金华, 袁宁一, 谢太斌, 但迪迪. 超高温度系数V0.97W0.03 O2多晶薄膜的制备研究. 物理学报, 2007, 56(3): 1790-1795. doi: 10.7498/aps.56.1790
    [15] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [16] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究. 物理学报, 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [17] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [18] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [19] 邹崇文, 孙 柏, 王国栋, 张文华, 徐彭寿, 潘海斌, 徐法强, 尹志军, 邱 凯. 低覆盖度的Au/GaN(0001)界面的同步辐射研究. 物理学报, 2005, 54(8): 3793-3798. doi: 10.7498/aps.54.3793
    [20] 孟春霞, 黄世华, 由芳田, 常建军, 彭洪尚, 陶 冶, 张国斌. YAG:Pr3+的真空紫外光谱分析及其4f5d能级的研究. 物理学报, 2005, 54(11): 5468-5473. doi: 10.7498/aps.54.5468
计量
  • 文章访问数:  3956
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-02
  • 修回日期:  2016-01-14
  • 刊出日期:  2016-04-05

VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应

  • 1. 中国科学技术大学, 国家同步辐射实验室, 合肥 230029
  • 通信作者: 徐法强, fqxu@ustc.edu.cn
    基金项目: 国家自然科学基金(批准号: 11175172, U1232137, u1332133)和中国科学院合肥大科学中心科学研究项目(批准号: 2015SRG-HSC032)资助的课题.

摘要: VO2表面氧缺陷的存在对VO2材料具有显著的电子掺杂效应, 极大地影响材料的本征电子结构和相变性质. 通过2, 3, 5, 6-四氟-7, 7', 8, 8'-四氰二甲基对苯醌(F4TCNQ)分子表面吸附反应, 可以有效消除表面氧缺陷及其电子掺杂效应. 利用同步辐射光电子能谱和X射线吸收谱原位研究了修复过程中电子结构的变化以及界面的化学反应, 发现这种方式使得VO2薄膜样品氩刻后得到的V3+失去电子成功地被氧化成原先的V4+, 同时F4TCNQ分子吸附引起电子由衬底向分子层转移, 界面形成带负电荷的分子离子物种. 受电化学性质的制约, F4TCNQ分子吸附反应修复氧缺陷较氧气氛退火更安全有效, 不会引起表面过度氧化形成V2O5.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回