搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究

王晓锋 李玉清 冯国胜 武寄洲 马杰 肖连团 贾锁堂

引用本文:
Citation:

基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究

王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂

Inverstigation on loading of the Dimple optical trap based on a magnetically levitated large-volume crossed optical dipole trap

Wang Xiao-Feng, Li Yu-Qing, Feng Guo-Sheng, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang
PDF
导出引用
  • 三维拉曼边带冷却后的铯原子样品装载于一个磁悬浮的大体积交叉光学偶极阱中, 继续加载一个小体积的光学偶极阱后, 实现了Dimple光学偶极阱对铯原子的高效装载. 对不同磁场下磁悬浮大体积光阱的有效装载势能进行理论分析与实验测量, 得出最优化的梯度磁场和均匀偏置磁场, 获得了基于磁悬浮大体积光阱的Dimple光学偶极阱的装载势能曲线, 实现了Dimple光学偶极阱对经拉曼边带冷却后俘获在磁悬浮的大体积光阱中的铯原子样品的有效装载. 比较了Dimple光学偶极阱分别从拉曼边带冷却、大体积的交叉光阱和消除反俘获势后的磁悬浮大体积光阱装载的结果, 将俘获在磁悬浮大体积光阱中的铯原子样品装载到Dimple光学偶极阱, 铯原子样品的密度提高了约15倍.
    Optical trapping techniques and the ability to tune the atomic interactions both have made the unprecedented progress in the quantum gas research field. The major advantage of the optical trap is that the atoms are likely to be trapped at various sub-levels of the electronic ground state and the interaction strength can be controlled by Feshbach resonance. Optical trapping methods in combination with magnetic tuning of the scattering properties directly lead to the experimental achievements of Bose-Einstein condensation (BEC) of Cesium, which at first failed by using magnetic trapping approaches due to the large inelastic collision rate. The rapid loss of cesium atoms due to the inelastic two-body collisions greatly suppresses the efficient evaporative cooling to obtain a condensate. For optical production of cesium atomic BEC, it is necessary to prepare a large number of Cs atoms at specified state in an optical trap for condensation, especially for an efficient forced evaporation cooling. In this paper, we demonstrate our research on enhancing the loading rate of the atoms by using a dimple trap combined with a large-volume optical dipole trap (reservoir trap). In our work, the cold cesium atoms are prepared by a three-dimensional degenerated Raman sideband cooling, and then loaded into a large-volume crossed dipole trap by using the magnetic levitation technique. Effective load of the dimple optical trap is realized by superposing the small-volume dimple trap on the center of the largevolume optical trap. The theoretical analyses are performed for the magnetically levitated large-volume crossed dipole trap in variable magnetic field gradients and uniform bias fields. Optimal experimental values are acquired accordingly. The combined potential curve of the dimple trap, which is superimposed on the magnetically levitated large-volume dipole trap, is also given. The loading of precooled atoms from Raman sideband cooling into the magnetically levitated large-volume optical trap is measured in variable magnetic field gradients and uniform bias fields. Different loading results of the dimple trap are investigated, including direct loading after Raman sideband cooling, the large-volume optical trap and the magnetically levitated large-volume dipole trap without anti-trapping potential. Comparatively, the atomic number density is enhanced by a factor of ~15 by loading the atomic sample from the magnetically levitated large-volume dipole trap into the dimple optical trap. The experimental results lay a sound basis for the further cooling and densifying the atomic cloud through the evaporating cooling stage. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for atomic species with large atom mass.
      通信作者: 武寄洲, wujz@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、教育部长江学者和创新团队发展计划(批准号: IRT13076)、国家自然科学基金重大研究计划(批准号: 91436108)、国家自然科学基金(批准号: 61378014, 61308023, 61378015, 11434007)、教育部新教师基金(批准号: 20131401120012)和山西省优秀青年学术带头人和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.
      Corresponding author: Wu Ji-Zhou, wujz@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91436108), the National Natural Science Foundation of China (Grant Nos. 61378014, 61308023, 61378015, 11434007), the New Teacher Fund of the Ministry of Education of China (Grant No. 20131401120012), and the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2013021005-1).
    [1]

    Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202

    [2]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [3]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [5]

    Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95

    [6]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945

    [7]

    Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110

    [9]

    Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401

    [10]

    Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603

    [11]

    Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621

    [12]

    Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001

    [13]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404

    [14]

    Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570

    [15]

    Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403

    [16]

    Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405

    [17]

    Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647

    [18]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345

    [19]

    Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311

    [20]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [21]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [22]

    Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013

    [23]

    Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990

    [24]

    Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194

    [25]

    Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295

    [26]

    Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402

    [27]

    Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602

    [28]

    Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410

    [29]

    Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402

    [30]

    Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022

    [31]

    Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401

    [32]

    Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604

    [35]

    Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701

    [36]

    Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404

    [37]

    Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 物理学报 55 3403]

    [38]

    Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 物理学报 64 153303]

  • [1]

    Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202

    [2]

    Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518

    [3]

    Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452

    [4]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [5]

    Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95

    [6]

    Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945

    [7]

    Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115

    [8]

    Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110

    [9]

    Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401

    [10]

    Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603

    [11]

    Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621

    [12]

    Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001

    [13]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404

    [14]

    Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570

    [15]

    Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403

    [16]

    Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405

    [17]

    Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647

    [18]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345

    [19]

    Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311

    [20]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [21]

    Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232

    [22]

    Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013

    [23]

    Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990

    [24]

    Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194

    [25]

    Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295

    [26]

    Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402

    [27]

    Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602

    [28]

    Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410

    [29]

    Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402

    [30]

    Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022

    [31]

    Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401

    [32]

    Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501

    [33]

    Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604

    [34]

    Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604

    [35]

    Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701

    [36]

    Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404

    [37]

    Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 物理学报 55 3403]

    [38]

    Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 物理学报 64 153303]

  • [1] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [2] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [3] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [4] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [5] 温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳. 磁悬浮式电磁-摩擦复合生物机械能量采集器. 物理学报, 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [6] 刘贝, 靳刚, 何军, 王军民. 基于微型光学偶极阱中单个铯原子俘获与操控的852 nm触发式单光子源. 物理学报, 2016, 65(23): 233701. doi: 10.7498/aps.65.233701
    [7] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [8] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [9] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器. 物理学报, 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [10] 刁文婷, 何军, 刘贝, 王杰英, 王军民. 利用蓝失谐激光诱导微型光学偶极阱中冷原子间的光助碰撞提高单原子制备概率. 物理学报, 2014, 63(2): 023701. doi: 10.7498/aps.63.023701
    [11] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [12] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [13] 王成, 许鹏, 何晓东, 王谨, 詹明生. 单原子在两个远红失谐光偶极阱中的转移. 物理学报, 2012, 61(20): 203701. doi: 10.7498/aps.61.203701
    [14] 杨金金, 李慧军, 文文, 黄国翔. n型主动拉曼增益原子介质中的光学双稳态. 物理学报, 2012, 61(22): 224204. doi: 10.7498/aps.61.224204
    [15] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [16] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [17] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [18] 刘向绯, 蒋昌忠, 任 峰, 付 强. Ag离子注入非晶SiO2的光学吸收、拉曼谱和透射电镜研究. 物理学报, 2005, 54(10): 4633-4637. doi: 10.7498/aps.54.4633
    [19] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性. 物理学报, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
    [20] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
计量
  • 文章访问数:  2914
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-24
  • 修回日期:  2016-01-25
  • 刊出日期:  2016-04-05

基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究

  • 1. 山西大学, 极端光学协同创新中心, 激光光谱研究所, 量子光学与光量子器件国家重点实验室, 太原 030006
  • 通信作者: 武寄洲, wujz@sxu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、教育部长江学者和创新团队发展计划(批准号: IRT13076)、国家自然科学基金重大研究计划(批准号: 91436108)、国家自然科学基金(批准号: 61378014, 61308023, 61378015, 11434007)、教育部新教师基金(批准号: 20131401120012)和山西省优秀青年学术带头人和山西省青年科技研究基金(批准号: 2013021005-1)资助的课题.

摘要: 三维拉曼边带冷却后的铯原子样品装载于一个磁悬浮的大体积交叉光学偶极阱中, 继续加载一个小体积的光学偶极阱后, 实现了Dimple光学偶极阱对铯原子的高效装载. 对不同磁场下磁悬浮大体积光阱的有效装载势能进行理论分析与实验测量, 得出最优化的梯度磁场和均匀偏置磁场, 获得了基于磁悬浮大体积光阱的Dimple光学偶极阱的装载势能曲线, 实现了Dimple光学偶极阱对经拉曼边带冷却后俘获在磁悬浮的大体积光阱中的铯原子样品的有效装载. 比较了Dimple光学偶极阱分别从拉曼边带冷却、大体积的交叉光阱和消除反俘获势后的磁悬浮大体积光阱装载的结果, 将俘获在磁悬浮大体积光阱中的铯原子样品装载到Dimple光学偶极阱, 铯原子样品的密度提高了约15倍.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回