搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析

彭颖吒 张锴 郑百林 李泳

引用本文:
Citation:

广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析

彭颖吒, 张锴, 郑百林, 李泳

Stress analysis of a cylindrical composition-gradient electrode of lithium-ion battery in generalized plane strain condition

Peng Ying-Zha, Zhang Kai, Zheng Bai-Lin, Li Yong
PDF
导出引用
  • 柱形梯度材料是最有潜力的锂离子电池电极之一. 为了研究恒压充电过程中柱形梯度材料颗粒电极下力学机理, 以Li1.2(Mn0.62Ni0.38)0.8O2为例, 讨论弹性模量、扩散系数和偏摩尔体积三个重要材料参数对应力场影响. 并推导出非均匀柱形颗粒电极的扩散方程和力学方程. 结果表明, 柱形梯度材料纳米电极, 沿着半径方向Mn 的材料组分升高Ni 的材料组分降低, 其材料结构有利于降低最大径向应力和环向拉应力, 有效地避免电极的力学失效现象. 并根据计算结果, 对梯度材料电极提出材料结构优化建议.
    A novel cylindrical composition-gradient electrode is considered to be one of most potential structures in lithium-ion battery. To investigate the mechanism of a cylindrical composition-gradient electrode under potentiostatic operation, we take Li1.2(Mn0.62Ni0.38)0.8O2 for example. The effects of the three main factors, i.e., diffusion coefficient, Youngs modulus, partial molar volume of solute, on the stress field in the cylindrical electrode are discussed. Each of the three material parameters is assumed to be a linear function of the distance from the center to surface. The small deformation theory and thermodynamic theory are employed to establish the mathematical model of composition-gradient cylindrical electrode. The mechanics equations and diffusion equation of cylindrical electrode are derived for an inhomogeneous material in plane strain condition. By comparing with single-phase electrode, it is found that Youngs modulus increasing from the center to the surface greatly reduces the max tensile radial stress and tensile hoop stress and changes the location of max radial stress since the radial displacement of the center is restricted. The time for the lithium-ions to reach the center is longer and the tensile stress near the center decreases at dimensionless time =0.0574 when diffusion coefficient decreases along the radial direction. Owing to the smaller diffusion coefficient at the surface, there is a reduction in the number of lithium-ions through the unit area in unit time when their corresponding concentration gradients are the same. The variation of partial molar volume means that the volume expansion caused by the intercalation of lithium-ions decreases along the radial direction. Therefore the partial molar volume decreasing along the radial direction considerably reduces the radial stress and the distribution of tangential stress becomes flat. The center point is picked, showing the development of hoop stress. The results show that the hoop stress increases and reaches a maximal value close to the dimensionless time =0.0574. Maximal tensile hoop stress at the center is reduced in an inhomogeneous material. The tensile hoop stress turns into compressive stress over time when elastic modulus and partial molar volume are denoted with E(r) and (r) respectively. The results indicate that the cylindrical composition-gradient electrode with core enriched Ni and edge enriched Mn reduces the max tensile radial stress and tensile hoop stress. It is an efficient way to avoid mechanical fracture in electrode since evidence has accumulated that tensile stress is the lead cause of crack in electrode. The result also provides useful guidance for mitigating the stresses in a cylindrical electrode.
      Corresponding author: Zheng Bai-Lin, blzheng@tongji.edu.cn
    [1]

    Lockwood D J 1999 Nanostructure Science and Technology (New York: Springer) pp1-20

    [2]

    Pesaran A, Market T, Tataria H, Howell D 2007 Battery Requirements for Plug-in Hybrid Electricvehicles: Analysis and Rationale California,USA, December 2-5, 2007 p42467

    [3]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 56 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华,艾亮 2015 物理学报 56 210202]

    [4]

    Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206

    [5]

    Woo K C, Kamitakahara W A, DiVincenzo D P, Robinson D S, Mertwoy H, Milliken J W, Fischer J E 1893 Phys. Rev. Lett. 50 182

    [6]

    Besenhard J O, Yang J, Winter M 1997 J. Power Sources 68 87

    [7]

    Fuqian Y 2010 J. Appl. Phys. 108 073536

    [8]

    Zhu T 2016 Chin. Phys. B 25 014601

    [9]

    Hao F, Fang D N 2013 J. Electro. Soc. 160 A595

    [10]

    Gary M K, Belharouak Jr I, Deng H, Sun Y K, Amine K 2011 Chemical of Materials 23 1954

    [11]

    Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 物理学报 59 5863]

    [12]

    Liu R, Duay J, Lee S 2011 Chem. Commun. 47 1384

    [13]

    Prussin S 1961 J. Appl. Phys. 32 1876

    [14]

    Li J C, Dozier A K, Li Yang F Q, Cheng Y T 2011 J. Electrochem. Soc. 158 A689

    [15]

    Lee S, Wang W L, Chen J R 2000 Mater. Chem. Phys. 64 123

    [16]

    Song Y C, Lu B, Ji X, Zhang J Q 2012 J. Electrochem. Soc. 159 A2060

    [17]

    Zhang T, Guo Z S, Wang Y H 2014 J. Appl. Phys. 115 083504

    [18]

    Guo Z S, Zhang T, Hu H J, Song Y C, Zhang J Q 2013 J. Appl. Mech. 81 031013

    [19]

    Li Y, Zhang K, Zheng B 2015 J. Appl. Phys. 117 245103

    [20]

    Wei Q, Wang X, Yang X, Ju B, Hu B, Shu H, Wen W, Zhou M, Song Y, Wu H, Hu H 2013 J. Mater. Chem. A 1 4010

    [21]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Oxford University Press) pp69-89

    [22]

    Cheng Y T, Verbrugge M W 2008 J. Appl. Phys. 104 083521

    [23]

    Hu Y H, Zhao X H, Suo Z G 2010 J. Mater. Res. 25 1007

    [24]

    Huggins R A, Nix W D 2000 Ionics 6 57

    [25]

    Bhandakkar T K, Gao H J 2010 Int. J. Solids Struc. 47 1424

    [26]

    Woodford W H, Chiang Y M, Carter W C 2010 J. Electrochem. Soc. 157 A1052

    [27]

    Zhao K J, Pharr M, Vlassak J J, Suo Z G 2010 J. Appl. Phys. 108 073517

  • [1]

    Lockwood D J 1999 Nanostructure Science and Technology (New York: Springer) pp1-20

    [2]

    Pesaran A, Market T, Tataria H, Howell D 2007 Battery Requirements for Plug-in Hybrid Electricvehicles: Analysis and Rationale California,USA, December 2-5, 2007 p42467

    [3]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 56 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华,艾亮 2015 物理学报 56 210202]

    [4]

    Wu M S, Xu B, Ouyang C Y 2016 Chin. Phys. B 25 018206

    [5]

    Woo K C, Kamitakahara W A, DiVincenzo D P, Robinson D S, Mertwoy H, Milliken J W, Fischer J E 1893 Phys. Rev. Lett. 50 182

    [6]

    Besenhard J O, Yang J, Winter M 1997 J. Power Sources 68 87

    [7]

    Fuqian Y 2010 J. Appl. Phys. 108 073536

    [8]

    Zhu T 2016 Chin. Phys. B 25 014601

    [9]

    Hao F, Fang D N 2013 J. Electro. Soc. 160 A595

    [10]

    Gary M K, Belharouak Jr I, Deng H, Sun Y K, Amine K 2011 Chemical of Materials 23 1954

    [11]

    Hu G J, Ouyang C Y 2010 Acta Phys. Sin. 59 5863 (in Chinese) [胡国进, 欧阳楚英 2010 物理学报 59 5863]

    [12]

    Liu R, Duay J, Lee S 2011 Chem. Commun. 47 1384

    [13]

    Prussin S 1961 J. Appl. Phys. 32 1876

    [14]

    Li J C, Dozier A K, Li Yang F Q, Cheng Y T 2011 J. Electrochem. Soc. 158 A689

    [15]

    Lee S, Wang W L, Chen J R 2000 Mater. Chem. Phys. 64 123

    [16]

    Song Y C, Lu B, Ji X, Zhang J Q 2012 J. Electrochem. Soc. 159 A2060

    [17]

    Zhang T, Guo Z S, Wang Y H 2014 J. Appl. Phys. 115 083504

    [18]

    Guo Z S, Zhang T, Hu H J, Song Y C, Zhang J Q 2013 J. Appl. Mech. 81 031013

    [19]

    Li Y, Zhang K, Zheng B 2015 J. Appl. Phys. 117 245103

    [20]

    Wei Q, Wang X, Yang X, Ju B, Hu B, Shu H, Wen W, Zhou M, Song Y, Wu H, Hu H 2013 J. Mater. Chem. A 1 4010

    [21]

    Crank J 1979 The Mathematics of Diffusion (Oxford: Oxford University Press) pp69-89

    [22]

    Cheng Y T, Verbrugge M W 2008 J. Appl. Phys. 104 083521

    [23]

    Hu Y H, Zhao X H, Suo Z G 2010 J. Mater. Res. 25 1007

    [24]

    Huggins R A, Nix W D 2000 Ionics 6 57

    [25]

    Bhandakkar T K, Gao H J 2010 Int. J. Solids Struc. 47 1424

    [26]

    Woodford W H, Chiang Y M, Carter W C 2010 J. Electrochem. Soc. 157 A1052

    [27]

    Zhao K J, Pharr M, Vlassak J J, Suo Z G 2010 J. Appl. Phys. 108 073517

  • [1] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [2] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [3] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [5] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [6] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [7] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [8] 彭颖吒, 李泳, 郑百林, 张锴, 徐咏川. 考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析. 物理学报, 2018, 67(7): 070203. doi: 10.7498/aps.67.20172288
    [9] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [10] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [11] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [13] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [14] 刘相, 谢凯, 郑春满, 王军. 不同气氛下裂解含苯环聚硅氧烷制备锂离子电池Si-O-C复合负极材料的电池性能研究. 物理学报, 2011, 60(11): 118202. doi: 10.7498/aps.60.118202
    [15] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [18] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [19] 陈立宝, 虞红春, 许春梅, 王太宏. 离子束辅助沉积硅薄膜负极材料的研究. 物理学报, 2009, 58(7): 5029-5034. doi: 10.7498/aps.58.5029
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  4058
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-31
  • 修回日期:  2016-01-27
  • 刊出日期:  2016-05-05

广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析

摘要: 柱形梯度材料是最有潜力的锂离子电池电极之一. 为了研究恒压充电过程中柱形梯度材料颗粒电极下力学机理, 以Li1.2(Mn0.62Ni0.38)0.8O2为例, 讨论弹性模量、扩散系数和偏摩尔体积三个重要材料参数对应力场影响. 并推导出非均匀柱形颗粒电极的扩散方程和力学方程. 结果表明, 柱形梯度材料纳米电极, 沿着半径方向Mn 的材料组分升高Ni 的材料组分降低, 其材料结构有利于降低最大径向应力和环向拉应力, 有效地避免电极的力学失效现象. 并根据计算结果, 对梯度材料电极提出材料结构优化建议.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回