搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响

谭晓明 赵刚 张迪

引用本文:
Citation:

BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响

谭晓明, 赵刚, 张迪

Effects of fine structure of absorption spectrum and spin-singlet on zero-field-splitting parameters for BaCrSi4O10 and AgGaSe2:Cr2+

Tan Xiao-Ming, Zhao Gang, Zhang Di
PDF
导出引用
  • 在强场图像中构造了四角对称环境中Cr2+离子包括自旋单态在内的完全能量矩阵, 通过对角化能量矩阵方法, 计算得到了BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响. 从理论上给出了BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及BaCrSi4O10的零场分裂参量值. 计算结果显示自旋单态对零场分裂参量D的影响完全可忽略, 但对a和F的影响比较大. 这种影响主要来自自旋-轨道耦合导致的自旋五重态与自旋三重态和自旋单态的相互作用, 而自旋轨道耦合的选择定则显示自旋单态并非直接影响五重态而是通过自旋三重态间接地影响基态的五重态. 因此, 为了得到准确的零场分裂参量值, 所有的自旋态都应该考虑.
    The compounds doped with or containing Cr2+ ions are extensively used as optoelectronic and nonlinear optical materials, because they have special optical, magnetic and electric properties. These properties are very closely related to the absorption spectra and zero-field-splitting. The studies of the absorption spectra and zero-field-splitting are very important for realizing the doped microscopic mechanism and understanding the interaction between impurity ions and host crystals, and they may be useful to material designers. The concept of the standard basis adapted to the double group chain is adopted in the strong-field scheme by the crystal field theory. This concept emphasizes the standardization of the basis of the whole 3d4 configuration space including all spin states. Thus, the basis functions can be constructed according to each irreducible representation of the double group and each basis function has a certain expression. Each standard basis adapted to the double group chain can be built from the former by a linear transformation, which forms a basis chain. Thus, the complete energy matrix including spin singlet is constructed for Cr2+ ion in tetragonal symmetry environment in the strong-field-representation by the crystal field theory. The fine structures of absorption spectra and the spin-singlet contributions to zero-field-splitting parameters for BaCrSi4O10 and AgGaSe2:Cr2+ are studied by diagonalizing the complete energy matrix. The fine structures for the two systems and the zero-field-splitting parameters for BaCrSi4O10 are given theoretically for the first time. The fine structures are assigned by the irreducible representation of the group. The results show that the spin-singlet contribution to D is negligible, but the contributions to a and F are important. The contributions arise from the interaction of the spin quintuplets with both spin triplets and spin singlets via spin-orbit coupling. However, the selection rule of spin-orbit coupling shows that the spin singlets do not affect the quintuplets directly but indirectly via the spin triplets. Thus, all spin states should be considered to obtain more accurate zero-field-splitting values.
      通信作者: 谭晓明, scu_txm@163.com
    • 基金项目: 国家自然科学基金(批准号:11204121)和山东省自然科学基金(批准号:ZR2011AL021)资助的课题.
      Corresponding author: Tan Xiao-Ming, scu_txm@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11204121) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011AL021).
    [1]

    Hazen R M, Finger I W 1983 Am. Mineral. 68 595

    [2]

    Strens R G J 1966 Chem. Commun. 21 777

    [3]

    Abu-Eid R, Mao H K, Burns R G 1973 Carnegie Institure Year Book 72 564

    [4]

    Stevens K T, Garces N Y, Bai L, Giles N C, Halliburton L E, Setzler S D, Schunemann P G, Pollak T M, Route R K, Feigelson R S 2004 J. Phys. : Condens. Matter 16 2593

    [5]

    Zheng W C, Wu S Y, Zhao B J, Zhu S F 1999 Physica B 269 319

    [6]

    Jacob R, Geethu R, Shripathi T, Ganesan V, Deshpande U P, Tripathi S, Pradeep B, Philip R R 2013 J. Inorg. Organomet. Polym. 23 424

    [7]

    Feigelson R S, Route R K 1990 J. Cryst. Growth 104 789

    [8]

    Singh N B, Hopkins R H, Mazelsky R, Dorman H H 1986 Mater. Lett. 4 357

    [9]

    Bordui P F, Fejer M M 1993 Annu. Rev. Mater. Sci. 23 321

    [10]

    Wang H W, Lu M H 2001 Opt. Commun. 192 357

    [11]

    Hori T, Ozaki S 2013 J. Appl. Phys. 113 173516

    [12]

    Miletich R, Allan D R, Angel R J 1997 Am. Mineral. 82 697

    [13]

    Shakurov G S, Avanesov A G, Avanesov S A 2009 Phys. Solid State 51 2292

    [14]

    Yang Z Y 2011 Chin. Phys. B 20 097601

    [15]

    Wu Z Y, Kuang X Y, Li H, Mao A J, Wang Z H 2014 Acta Phys. Sin. 63 017102 (in Chinese) [武志燕, 邝小渝, 李辉, 毛爱杰, 王振华 2014 物理学报 63 017102]

    [16]

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 144205 (in Chinese) [高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 物理学报 63 144205]

    [17]

    Zhou Y Y, Li C L 1993 Phys. Rev. B 48 16489

    [18]

    Zhou Y Y, Li F Z 1995 Phys. Rev. B 51 14176

    [19]

    Zhou Y Y, Rudowicz C 1996 J. Phys. Chem. Solids 57 1191

    [20]

    Zhou Y Y, Li F Z 1998 J. Phys. Chem. Solids 59 1105

    [21]

    Lu T T, Kuang X Y, Li H, Li H H, Wu Z Y, Mao A J 2014 Chin. Phys. B 23 117104

    [22]

    Yuan L L, Zhang X S, Xu J P, Sun J, Jin H, Liu X J, Liu L L, Li L 2015 Chin. Phys. B 24 087802

    [23]

    Tan X M, Zhou K W 2014 Mater. Sci. Eng. B 183 34

    [24]

    Griffith J S 1961 The Theory of Transition Metal Ions (Cambridge: Cambridge University Press) pp193-195

    [25]

    Kaufmann U 1976 Phys. Rev. B 14 1848

    [26]

    Curie D, Barthon C, Canny B 1974 J. Chem. Phys. 61 3048

  • [1]

    Hazen R M, Finger I W 1983 Am. Mineral. 68 595

    [2]

    Strens R G J 1966 Chem. Commun. 21 777

    [3]

    Abu-Eid R, Mao H K, Burns R G 1973 Carnegie Institure Year Book 72 564

    [4]

    Stevens K T, Garces N Y, Bai L, Giles N C, Halliburton L E, Setzler S D, Schunemann P G, Pollak T M, Route R K, Feigelson R S 2004 J. Phys. : Condens. Matter 16 2593

    [5]

    Zheng W C, Wu S Y, Zhao B J, Zhu S F 1999 Physica B 269 319

    [6]

    Jacob R, Geethu R, Shripathi T, Ganesan V, Deshpande U P, Tripathi S, Pradeep B, Philip R R 2013 J. Inorg. Organomet. Polym. 23 424

    [7]

    Feigelson R S, Route R K 1990 J. Cryst. Growth 104 789

    [8]

    Singh N B, Hopkins R H, Mazelsky R, Dorman H H 1986 Mater. Lett. 4 357

    [9]

    Bordui P F, Fejer M M 1993 Annu. Rev. Mater. Sci. 23 321

    [10]

    Wang H W, Lu M H 2001 Opt. Commun. 192 357

    [11]

    Hori T, Ozaki S 2013 J. Appl. Phys. 113 173516

    [12]

    Miletich R, Allan D R, Angel R J 1997 Am. Mineral. 82 697

    [13]

    Shakurov G S, Avanesov A G, Avanesov S A 2009 Phys. Solid State 51 2292

    [14]

    Yang Z Y 2011 Chin. Phys. B 20 097601

    [15]

    Wu Z Y, Kuang X Y, Li H, Mao A J, Wang Z H 2014 Acta Phys. Sin. 63 017102 (in Chinese) [武志燕, 邝小渝, 李辉, 毛爱杰, 王振华 2014 物理学报 63 017102]

    [16]

    Gao J Y, Sun D L, Luo J Q, Li X L, Liu W P, Zhang Q L, Yin S T 2014 Acta Phys. Sin. 63 144205 (in Chinese) [高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐 2014 物理学报 63 144205]

    [17]

    Zhou Y Y, Li C L 1993 Phys. Rev. B 48 16489

    [18]

    Zhou Y Y, Li F Z 1995 Phys. Rev. B 51 14176

    [19]

    Zhou Y Y, Rudowicz C 1996 J. Phys. Chem. Solids 57 1191

    [20]

    Zhou Y Y, Li F Z 1998 J. Phys. Chem. Solids 59 1105

    [21]

    Lu T T, Kuang X Y, Li H, Li H H, Wu Z Y, Mao A J 2014 Chin. Phys. B 23 117104

    [22]

    Yuan L L, Zhang X S, Xu J P, Sun J, Jin H, Liu X J, Liu L L, Li L 2015 Chin. Phys. B 24 087802

    [23]

    Tan X M, Zhou K W 2014 Mater. Sci. Eng. B 183 34

    [24]

    Griffith J S 1961 The Theory of Transition Metal Ions (Cambridge: Cambridge University Press) pp193-195

    [25]

    Kaufmann U 1976 Phys. Rev. B 14 1848

    [26]

    Curie D, Barthon C, Canny B 1974 J. Chem. Phys. 61 3048

  • [1] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁. 物理学报, 2017, 66(12): 123101. doi: 10.7498/aps.66.123101
    [2] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] 裴栋梁, 何军, 王杰英, 王家超, 王军民. 铯原子里德伯态精细结构测量. 物理学报, 2017, 66(19): 193701. doi: 10.7498/aps.66.193701
    [4] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [5] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究. 物理学报, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [6] 钱帅, 郭新立, 王家佳, 余新泉, 吴三械, 于金. Cun-1Au (n=2–10)团簇结构、静态极化率及吸收光谱的第一性原理研究. 物理学报, 2013, 62(5): 057803. doi: 10.7498/aps.62.057803
    [7] 宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐. Yb3+:Gd2SiO5晶体的结构和光谱性能. 物理学报, 2012, 61(12): 128102. doi: 10.7498/aps.61.128102
    [8] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定. 物理学报, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [9] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [10] 卢成, 王丽, 卢志文, 宋海珍, 李根全. ZnS:Cr2+中局域晶格结构和自旋单态对零场分裂参量的贡献. 物理学报, 2011, 60(8): 087601. doi: 10.7498/aps.60.087601
    [11] 孙言, 苟秉聪, 朱婧晶. Li“洞原子”高位三激发态2 S(m)和2 D(m) (m=2—7)的能级、精细结构和Auger宽度. 物理学报, 2010, 59(6): 3878-3884. doi: 10.7498/aps.59.3878
    [12] 马怡培, 贺黎明, 张孟, 朱云霞. 钠原子nd高Rydberg系列能级精细结构的计算研究. 物理学报, 2009, 58(11): 7621-7626. doi: 10.7498/aps.58.7621
    [13] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究. 物理学报, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [14] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论. 物理学报, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [15] 吕海萍, 殷春浩, 魏雪松, 钮应喜, 宋 宁, 茹瑞鹏. LiNbO3∶Fe3+晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2007, 56(11): 6608-6615. doi: 10.7498/aps.56.6608
    [16] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [17] 殷春浩, 焦 杨, 张 雷, 宋 宁, 茹瑞鹏, 杨 柳. CsNiCl3晶体的光谱精细结构、零场分裂参量及Jahn-Teller效应. 物理学报, 2006, 55(11): 6047-6054. doi: 10.7498/aps.55.6047
    [18] 梁君武, 胡慧芳, 韦建卫, 彭 平. 氧吸附对单壁碳纳米管的电子结构和光学性能的影响. 物理学报, 2005, 54(6): 2877-2882. doi: 10.7498/aps.54.2877
    [19] 葛自明, 吕志伟, 王治文, 周雅君. 类锂体系激发态1s2 nd(n=3,4,5)精细结构和项能的理论计算. 物理学报, 2002, 51(12): 2733-2739. doi: 10.7498/aps.51.2733
    [20] 韩利红, 芶秉聪, 王菲. 类铍BⅡ离子激发态的相对论能量和精细结构. 物理学报, 2001, 50(9): 1681-1684. doi: 10.7498/aps.50.1681
计量
  • 文章访问数:  2629
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-15
  • 修回日期:  2016-02-22
  • 刊出日期:  2016-05-05

BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响

  • 1. 鲁东大学物理与光电工程学院, 烟台 264025;
  • 2. 鲁东大学交通学院, 烟台 264025
  • 通信作者: 谭晓明, scu_txm@163.com
    基金项目: 国家自然科学基金(批准号:11204121)和山东省自然科学基金(批准号:ZR2011AL021)资助的课题.

摘要: 在强场图像中构造了四角对称环境中Cr2+离子包括自旋单态在内的完全能量矩阵, 通过对角化能量矩阵方法, 计算得到了BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响. 从理论上给出了BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及BaCrSi4O10的零场分裂参量值. 计算结果显示自旋单态对零场分裂参量D的影响完全可忽略, 但对a和F的影响比较大. 这种影响主要来自自旋-轨道耦合导致的自旋五重态与自旋三重态和自旋单态的相互作用, 而自旋轨道耦合的选择定则显示自旋单态并非直接影响五重态而是通过自旋三重态间接地影响基态的五重态. 因此, 为了得到准确的零场分裂参量值, 所有的自旋态都应该考虑.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回