搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短超强激光脉冲辐照超薄碳膜电离状态研究

白春江 崔万照 余金清

引用本文:
Citation:

超短超强激光脉冲辐照超薄碳膜电离状态研究

白春江, 崔万照, 余金清

Ionization state of ultra-thin carbon film irradiated by ultra-short intense laser pulse

Bai Chun-Jiang, Cui Wan-Zhao, Yu Jin-Qing
PDF
导出引用
  • 为了进一步理解极端条件下物质的电离特性, 特别是超短超强激光脉冲辐照超薄靶时等离子体的形成与分布, 本文以超薄碳膜为例, 细致研究了超短超强激光脉冲辐照下原子的离化过程. 分析和比较了强激光场直接作用电离和靶内静电场电离等两种场致电离形式, 在碰撞电离可以忽略的情况下, 发现更多的电离份额是来自靶内静电场的电离方式. 研究了激光脉冲强度对电离的影响, 发现激光脉冲强度越强, 电离速度越快, 产生的高价态离子所占比例也越高.当激光强度为11020 W/cm2时, 尽管该强度高于电离生成C+6所需要的激光强度阈值, 但该激光脉冲并不能将整个靶电离成C+6离子, 对此本文进行了详细的分析. 在研究激光脉冲宽度的影响时, 发现激光脉宽越小, 电离速度越快, 但越小的激光脉冲电离获得的高价态离子越少.
    Ion acceleration is of interest for applications in fast ignition, compact particle sources, medical science, and others. The formation of plasma is of fundamental importance for understanding ion acceleration driven by intense laser. In order to further understand the solid dense material ionization dynamics under ultra-strong field, we use two-dimensional particle-in-cell code to study the ionization process of ultra-thin carbon film, driven by ultra-short intense laser pulse, particularly to see the plasma generation and distribution during the interaction. When an ultra-intense short pulse laser irradiates a solid dense nm-thick film target, the collisional ionization can be ignored for such a thin film target. If the target thickness is larger than laser pulse skin depth, the formation of plasma is contributed from laser field direct ionization and the ionization of electrostatic field inside the target, both of which are discussed and compared by the simulation results in this work. The ionization directly stimulated by laser field happens only near the laser-target interaction surface. After the generation of plasma on the target surface, electrons are accelerated into the target because of laser ponderomotive force. A huge electrostatic field is formed inside the target as a result of hot electron transport in it, and ionizes the target far from the interaction surface. It is found that a bigger fraction of ionization is contributed from electrostatic field ionization inside the target. The effect of laser pulse intensity on ionization is studied in detail, in which the laser pulse intensity is changed from 11018 W/cm2 to 11020 W/cm2. Comparing the results obtained under different intensities, we can see that higher intensity results in higher ionization speed, and much higher-order ions can be generated. At an intensity of 11020 W/cm2, although the intensity much higher than the threshold can generate C+6, only a small part of ions can be ionized into C+6. The reason is that the C+6 ions can be generated directly only by laser field, and the total number of C+6 ions is determined by laser pulse skin depth and spot size. We also consider the effect of laser pulse duration from 30 fs to 120 fs at an intensity of 11020 W/cm2. It is found that higher ionization speed can be obtained, while much less higher-order ions can be generated under shorter laser pulse duration. This description of the generation of solid density plasma driven by intense laser interacting with nm-thick target helps us to further understand the material characteristic under ultra-strong field. This work also benefits the numerical model of plasma in application, namely laser driven ultra-thin film ion acceleration.
      通信作者: 余金清, yujinqing5480@gmail.com
    • 基金项目: 国家自然科学基金重点项目 (批准号: U1537211) 资助的课题.
      Corresponding author: Yu Jin-Qing, yujinqing5480@gmail.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. U1537211).
    [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [3]

    Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109

    [4]

    Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201

    [5]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601

    [6]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [7]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [8]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [9]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [10]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [11]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [12]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543

    [13]

    Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597

    [14]

    Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 物理学报 61 175202]

    [15]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [16]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706

    [17]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006

    [18]

    Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002

    [19]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [20]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [21]

    Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206

    [22]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [23]

    Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003

    [24]

    Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015

    [25]

    Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801

    [26]

    Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203

    [27]

    Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005

    [28]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1

    [29]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648

    [30]

    Krainov V P, Smirnov M B 2002 Phys. Reports 370 237

    [31]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [32]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

  • [1]

    Maiman T H 1960 Nature 187 493

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 447

    [3]

    Yanovsky V, Chvykov V, Kalinchenko G, Rousseau P, Planchon T, Matsuoka T, Maksimchuk A, Nees J, Cheriaux G, Mourou G, Krushelnick K 2008 Opt. Express 16 2109

    [4]

    Sheng Z M, Weng S M, Yu L L, Wang W M, Cui Y Q, Chen M, Zhang J 2015 Chin. Phys. B 24 015201

    [5]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 054601

    [6]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [7]

    Qiao B, Zepf M, Borghesi M, Geissler M 2009 Phys. Rev. Lett. 102 145002

    [8]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [9]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [10]

    Mangles S P D, Murphy C D, Najmudin Z, Thomas A D R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535

    [11]

    Yu J Q, Zhou W M, Cao L H, Zhao Z Q, Cao L F, Shan L Q, Liu D X, Jin X L, Li B, Gu Y Q 2012 Appl. Phys. Lett. 100 204101

    [12]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Machinnon A, Snavely R A 2001 Phys. Plasma 8 543

    [13]

    Yu J Q, Jin X L, Zhou W M, Zhang B, Zhao Z Q, Cao L F, Li B, Gu Y Q, Zhan R X, Najmudin Z 2013 Laser and Particle Beams 31 597

    [14]

    Yu J Q, Zhou W M, Jin X L, Li B, Zhao Z Q 2012 Acta Phys. Sin. 61 175202 (in Chinese) [余金清, 周维民, 金晓林, 李斌, 赵宗清 2012 物理学报 61 175202]

    [15]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [16]

    Yin L, Albright B J, Hegelich B M, Bowers K J, Flippo K A, Kwan T J T, Fernandez J C 2007 Phys.Plasmas 14 056706

    [17]

    Kar S, Kakolee K F, Qiao B, Macchi A, Cerchez M, Doria D, Geissler M, McKenna P, Neely D, Osterholz J, Prasad R, Quinn K, Ramakrishna B, Sarri G, Willi O, Yuan X Y, Zepf M, Borghesi M 2012 Phys. Rev. Lett. 109 185006

    [18]

    Palmer C A J, Schreiber, Nagel S R, Dover N P, Bellei C, Beg F N, Bott S, Clarke R J, Dangor A E, Hassan S M, Hilz P, Jung D, Kneip S, Mangles S P D, Lancaster K L, Rehman A, Robinson A P L, Splindloe C, Szerypo J, Tatarakis M, Yeung M, Zepf M, Najmudin Z 2012 Phys. Rev. Lett. 108 225002

    [19]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 135003

    [20]

    Qiao B, Zepf M, Borghesi M, Dromey B, Geissler M, Karmakar A, Gibbon P 2010 Phys. Rev. Lett. 105 155002

    [21]

    Zhang S, Xie B S, Hong X R, Wu H C, Aimierding A, Zhao X Y, Liu M P 2011 Chin. Phys. B 20 015206

    [22]

    Liu M, Su L N, Zheng Y, Li Y T, Wang W M, Sheng Z M, Chen L M, Ma J L, Lu X, Wang Z H, Wei Z Y, Hu B T, Zhang J 2013 Acta Phys. Sin. 62 165201 (in Chinese) [刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰 2013 物理学报 62 165201]

    [23]

    Dollar F, Matsuoka T, Petrov G M, Thomas A G R, Bulanov S S, Chvyhov V, Davis, Kalinchenko G, McGuffey C, Willingale L, Yanovsky V, Maksimchuk A, Krushelnick K 2011 Phys. Rev. Lett. 107 065003

    [24]

    Hegelich B M, Pomerantz I, Yin L, Wu H C, Jung D, Albright B J, Gautier D C, Letzring S, Palaniyappan S, Shah R, Allinger K, Horlein R, Schreiber J, Habs D, Blakeney J, Dyer G, Fuller L, Gaul E, Mccary E, Meadows A R, Wang C, Ditmire T, Fernandez J C 2013 New J. Phys. 15 085015

    [25]

    Brarnzel J, Andreev A A, Platonov K, Klingsporn M, Ehrentraut L, Sandner W, Schnurer M 2015 Phys. Rev. Lett. 114 124801

    [26]

    Liu M W, Li R X, Xia C Q, Liu J S, Xu Z Z 2010 Chin. Phys. B 19 075203

    [27]

    Petrov G M, Davis J, Petrova Tz 2009 Plasma Phys. Control. Fusion 51 095005

    [28]

    Arber T D, Bennett K, Brady C S, Lawrence-Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R, Ridgers C P 2015 Plasma Physics and Controlled Fusion 57 1

    [29]

    Kemp A J, Pfund R E W, Meyer-ter-Vehn Jr 2004 Phys. Plasmas 11 5648

    [30]

    Krainov V P, Smirnov M B 2002 Phys. Reports 370 237

    [31]

    Penetrante B M, Bardsley J N 1991 Phys. Rev. A 43 3100

    [32]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383

  • [1] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应. 物理学报, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [2] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制. 物理学报, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [3] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [4] 金发成, 王兵兵. 频域图像下的强场非序列电离过程. 物理学报, 2016, 65(22): 224205. doi: 10.7498/aps.65.224205
    [5] 肖相如, 王慕雪, 黎敏, 耿基伟, 刘运全, 彭良友. 强激光场中原子单电离的半经典方法. 物理学报, 2016, 65(22): 220203. doi: 10.7498/aps.65.220203
    [6] 赵磊, 张琦, 董敬伟, 吕航, 徐海峰. 不同原子在飞秒强激光场中的里德堡态激发和双电离. 物理学报, 2016, 65(22): 223201. doi: 10.7498/aps.65.223201
    [7] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [8] 李文亮, 张季, 姚洪斌. 三种不同表象下多组态含时Hartree Fock理论实现方案. 物理学报, 2013, 62(12): 123202. doi: 10.7498/aps.62.123202
    [9] 刘梦, 苏鲁宁, 郑轶, 李玉同, 王伟民, 盛政明, 陈黎明, 马景龙, 鲁欣, 王兆华, 魏志义, 胡碧涛, 张杰. 超短超强激光与薄膜靶相互作用中不同价态碳离子的来源. 物理学报, 2013, 62(16): 165201. doi: 10.7498/aps.62.165201
    [10] 马宁, 王美山, 杨传路, 熊德林, 李小虎, 马晓光. 激光场强度对NO电子态粒子数布居影响的理论研究. 物理学报, 2010, 59(1): 215-221. doi: 10.7498/aps.59.215
    [11] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [12] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [13] 郭中华, 周效信. 基态分子波函数对N2分子在强激光场中产生高次谐波的影响. 物理学报, 2008, 57(3): 1616-1621. doi: 10.7498/aps.57.1616
    [14] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [15] 孔祥蕾, 罗晓琳, 牛冬梅, 张先燚, 阚瑞峰, 李海洋. 纳秒强激光场中甲醇光电离产生高价离子的研究. 物理学报, 2004, 53(5): 1340-1345. doi: 10.7498/aps.53.1340
    [16] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [17] 周效信, 李白文. 强激光场中原子的束缚态和连续态对高次谐波的影响. 物理学报, 2001, 50(10): 1902-1906. doi: 10.7498/aps.50.1902
    [18] 邵磊, 霍裕昆, 王平晓, 孔青, 袁祥群, 冯量. 场极化方向对强激光加速电子效应的影响. 物理学报, 2001, 50(7): 1284-1289. doi: 10.7498/aps.50.1284
    [19] 郑丽萍, 邱锡钧. 光强、频率对强激光场中的多原子分子离子增强电离行为的影响. 物理学报, 2000, 49(10): 1965-1968. doi: 10.7498/aps.49.1965
    [20] 丁刚健, 尚仁成, 张连芳, 文克玲, 惠秦, 陈瓞延. Au原子高Rydberg态场致电离的实验研究. 物理学报, 1989, 38(7): 1048-1055. doi: 10.7498/aps.38.1048
计量
  • 文章访问数:  2903
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-17
  • 修回日期:  2016-03-09
  • 刊出日期:  2016-06-05

超短超强激光脉冲辐照超薄碳膜电离状态研究

  • 1. 中国空间技术研究院西安分院, 空间微波技术重点实验室, 西安 710100;
  • 2. 帝国理工学院布莱克特实验室, 伦敦 SW7 2AZ;
  • 3. 电子科技大学, 真空电子器件国家级重点实验室, 成都 610054
  • 通信作者: 余金清, yujinqing5480@gmail.com
    基金项目: 国家自然科学基金重点项目 (批准号: U1537211) 资助的课题.

摘要: 为了进一步理解极端条件下物质的电离特性, 特别是超短超强激光脉冲辐照超薄靶时等离子体的形成与分布, 本文以超薄碳膜为例, 细致研究了超短超强激光脉冲辐照下原子的离化过程. 分析和比较了强激光场直接作用电离和靶内静电场电离等两种场致电离形式, 在碰撞电离可以忽略的情况下, 发现更多的电离份额是来自靶内静电场的电离方式. 研究了激光脉冲强度对电离的影响, 发现激光脉冲强度越强, 电离速度越快, 产生的高价态离子所占比例也越高.当激光强度为11020 W/cm2时, 尽管该强度高于电离生成C+6所需要的激光强度阈值, 但该激光脉冲并不能将整个靶电离成C+6离子, 对此本文进行了详细的分析. 在研究激光脉冲宽度的影响时, 发现激光脉宽越小, 电离速度越快, 但越小的激光脉冲电离获得的高价态离子越少.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回