搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体理论研究的新方法混合变分法

陈园园 杨盼杰 张玮芝 阎晓娜

引用本文:
Citation:

光子晶体理论研究的新方法混合变分法

陈园园, 杨盼杰, 张玮芝, 阎晓娜

A powerful method to analyze of photonic crystals: mixed variational method

Chen Yuan-Yuan, Yang Pan-Jie, Zhang Wei-Zhi, Yan Xiao-Na
PDF
导出引用
  • 利用混合变分法研究了二维光子晶体的能带结构, 得到了通带、禁带和群速度, 并详细分析光子晶体中的电磁场分布和能流密度分布. 该方法方便实用, 理论上能够应用于任意维度任意周期结构的光子晶体的计算.
    Photonic crystal has drawn much attention because of its application in molding the flow of light, which can be used in optical communication, optical storage and computing. In theory, plane wave expansion method, finite difference time domain (FDTD) method and transfer matrix method are widely used methods to study photonic crystal, and each of them has its own advantages and disadvantages.Here, a new method i.e. mixed variational method is introduced to study the photonic crystals, which is from the work of anti-plane shear waves in periodic layered elastic composites. The calculations of this method are direct and require no iteration, which accurately and efficiently produce the entire band structure of the composite and other field characteristics. Moreover, the composite cell in this method may consist of any number of units of any variable permittivity and permeability.Firstly, based on the variational principle, the Lagrangian density of electro-magnetic field is obtained. Then through the surface integral of the Lagrangian density in the unit cell, the Lagrangian is acquired. The first variation of Lagrangian with respect to electric field and magnetic field yields a set of Euler-Lagrange equations. Approximate solutions in explicit series expressions subject to the Bloch periodicity are substituted into the above equations. Minimization of Lagrangian with respect to the electric field and magnetic field results in an eigenvalue problem, and to solve it, the band structure of the composite is yielded. Electrical field, magnetic field, group velocity and energy flux density are also calculated. Secondly, we use the above method to study a two dimensional air-rod unit cell system. Bandgaps with respect to different structural parameters are plotted, which are the same as the results from the plane wave expansion method and FDTD method. In theory, the entire band structure can be calculated with our method. There are more gaps for TE wave than for TM case. By constant frequency contours, it is shown that there is a gap between the first and the second pass band for TE wave, however, there is no a gap for the corresponding TM wave. The directions of group velocity for the first and the second bands are shown in the contours. Electrical field, magnetic field and energy flux in cells illustrate the energy distribution, and the energy-flux directions and the group-velocity directions are also essentially the same. Lastly, we apply this mixed variational method to one-dimensional media-air slab and three dimensional sphere-air structure. The obtained band results accord with those reported previously former, which demonstrates that our method is universal and correct.In the present work, a mixed variational approach is proposed to produce the entire band structure of the composite for unit cells with any arbitrary properties. Explicit expressions are developed for the band, electrical field, magnetic field, group velocity and energy flux.
      通信作者: 阎晓娜, xnyan@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11274225) 和上海市自然科学基金(批准号: KW-201449732) 资助的课题.
      Corresponding author: Yan Xiao-Na, xnyan@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274225) and the Natural Science Foundation of Shanghai, China (Grant No. KW-201449732).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    John S 1990 Phys. Today 44 32

    [4]

    Lidorikis E, Buseh K, Li Q M, Chan C T, Soukoulis C M 1997 Phys. Rev. B 56 15090

    [5]

    Sabarinathan J, Bhattacharya P, Yu P C, Krishna S, Cheng J, Steel D G 2002 Appl. Phys. Lett. 81 3876

    [6]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 74101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 74101]

    [7]

    Zhang Z J, Shen Y F, Zhao H 2015 Acta Phys. Sin. 64 147802 (in Chinese) [张中杰, 沈义峰, 赵浩 2015 物理学报 64 147802]

    [8]

    Tang Z X, Yang X B, Lu J, Liu C Y 2014 Chin. Phys. B 23 44207

    [9]

    Kuzmiak V, Maradudin A A, Pincemin F 1994 Phys. Rev. B 50 16835

    [10]

    Sakoda K 1999 Opt. Rev. 6 381

    [11]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152

    [12]

    Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635

    [13]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [14]

    Pendry J B, MacKjnnon A 1992 Phys. Rev. Lett. 69 2772

    [15]

    Pendry J B 1996 J. Phys. Condens. Matter 8 1085

    [16]

    Bell P M, Pendry J B, Moreno L M, Ward A J 1995 Comput. Phys. Commun. 85 306

    [17]

    Nemat-Nasser S 1972 J. Elast. 2 73

    [18]

    Nemat-Nasser S, Srivastava A 2011 J. Mech. Phys. Solids 59 1953

    [19]

    Nemat-Nasser S, Willis J R, Srivastava A, Amirkhizi A V 2011 Phys. Rev. B 83 104103

    [20]

    Srivastava A, Nemat-Nasser S 2014 Mech. Mater. 74 67

    [21]

    Electromagnetic tensor, https://en.wikipedia.org/wiki/Electromagnetic_tensor [2016-3-11]

    [22]

    Vassallo C 1991 Optical Waveguide Concepts (Amsterdam: Elsevier)

    [23]

    Hammer M 2007 J. Lightwave Technol. 25 2287

    [24]

    Cheng C 2009 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese) [程川 2009 硕士学位论文 (兰州: 兰州大学)]

    [25]

    Zhang X F 2004 M. S. Thesis (Tianjin: Tianjin University) (in Chinese) [张晓帆 2004 硕士学位论文 (天津: 天津大学)]

    [26]

    Zhou L B, Hu M L, Chen X 2010 Science Technology 28 55 (in Chinese) [周利斌, 忽满利, 陈幸 2010 科技导报 28 55]

    [27]

    Feng C S 2007 Ph. D. Dissertation (Jinan: Shangdong University) (in Chinese) [冯传胜 2007 博士学位论文 (济南: 山东大学)]

    [28]

    John D J, Steven G J, Joshua N W, Robert D M 1995 Photonic Crystals-Molding the Flow of Light (New Jersey: Princeton University Press) p42

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    John S 1990 Phys. Today 44 32

    [4]

    Lidorikis E, Buseh K, Li Q M, Chan C T, Soukoulis C M 1997 Phys. Rev. B 56 15090

    [5]

    Sabarinathan J, Bhattacharya P, Yu P C, Krishna S, Cheng J, Steel D G 2002 Appl. Phys. Lett. 81 3876

    [6]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 74101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 74101]

    [7]

    Zhang Z J, Shen Y F, Zhao H 2015 Acta Phys. Sin. 64 147802 (in Chinese) [张中杰, 沈义峰, 赵浩 2015 物理学报 64 147802]

    [8]

    Tang Z X, Yang X B, Lu J, Liu C Y 2014 Chin. Phys. B 23 44207

    [9]

    Kuzmiak V, Maradudin A A, Pincemin F 1994 Phys. Rev. B 50 16835

    [10]

    Sakoda K 1999 Opt. Rev. 6 381

    [11]

    Ho K M, Chan C T, Soukoulis C M 1990 Phys. Rev. Lett. 65 3152

    [12]

    Chan C T, Yu Q L, Ho K M 1995 Phys. Rev. B 51 16635

    [13]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

    [14]

    Pendry J B, MacKjnnon A 1992 Phys. Rev. Lett. 69 2772

    [15]

    Pendry J B 1996 J. Phys. Condens. Matter 8 1085

    [16]

    Bell P M, Pendry J B, Moreno L M, Ward A J 1995 Comput. Phys. Commun. 85 306

    [17]

    Nemat-Nasser S 1972 J. Elast. 2 73

    [18]

    Nemat-Nasser S, Srivastava A 2011 J. Mech. Phys. Solids 59 1953

    [19]

    Nemat-Nasser S, Willis J R, Srivastava A, Amirkhizi A V 2011 Phys. Rev. B 83 104103

    [20]

    Srivastava A, Nemat-Nasser S 2014 Mech. Mater. 74 67

    [21]

    Electromagnetic tensor, https://en.wikipedia.org/wiki/Electromagnetic_tensor [2016-3-11]

    [22]

    Vassallo C 1991 Optical Waveguide Concepts (Amsterdam: Elsevier)

    [23]

    Hammer M 2007 J. Lightwave Technol. 25 2287

    [24]

    Cheng C 2009 M. S. Thesis (Lanzhou: Lanzhou University) (in Chinese) [程川 2009 硕士学位论文 (兰州: 兰州大学)]

    [25]

    Zhang X F 2004 M. S. Thesis (Tianjin: Tianjin University) (in Chinese) [张晓帆 2004 硕士学位论文 (天津: 天津大学)]

    [26]

    Zhou L B, Hu M L, Chen X 2010 Science Technology 28 55 (in Chinese) [周利斌, 忽满利, 陈幸 2010 科技导报 28 55]

    [27]

    Feng C S 2007 Ph. D. Dissertation (Jinan: Shangdong University) (in Chinese) [冯传胜 2007 博士学位论文 (济南: 山东大学)]

    [28]

    John D J, Steven G J, Joshua N W, Robert D M 1995 Photonic Crystals-Molding the Flow of Light (New Jersey: Princeton University Press) p42

  • [1] 王健, 吴重庆. 低差分模式群时延少模光纤的变分法分析及优化. 物理学报, 2022, 71(9): 094206. doi: 10.7498/aps.71.20212198
    [2] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [3] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [4] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型. 物理学报, 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [5] 陈培专, 于莉媛, 牛萍娟, 付贤松, 杨广华, 张建军, 侯国付. 锥形二维光子晶体太阳电池数值模拟. 物理学报, 2018, 67(2): 028802. doi: 10.7498/aps.67.20171689
    [6] 李群, 陈谦, 种景. InAlN/GaN异质结二维电子气波函数的变分法研究. 物理学报, 2018, 67(2): 027303. doi: 10.7498/aps.67.20171827
    [7] 熊庄, 汪振新, Naoum C. Bacalis. 基于改进变分法对原子激发态精确波函数的研究. 物理学报, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [8] 杨晓勇, 薛海斌, 梁九卿. 自旋相干态变换和自旋-玻色模型的基于变分法的基态解析解. 物理学报, 2013, 62(11): 114205. doi: 10.7498/aps.62.114205
    [9] 赵文达, 赵建, 续志军. 基于结构张量的变分多源图像融合. 物理学报, 2013, 62(21): 214204. doi: 10.7498/aps.62.214204
    [10] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响. 物理学报, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [12] 董华锋, 吴福根, 牟中飞, 钟会林. 二维复式声子晶体中基元配置对声学能带结构的影响. 物理学报, 2010, 59(2): 754-758. doi: 10.7498/aps.59.754
    [13] 郝国郡, 傅秀军, 侯志林. 正方点阵上Fibonacci超元胞声子晶体的带结构. 物理学报, 2009, 58(12): 8484-8488. doi: 10.7498/aps.58.8484
    [14] 程旭攀, 曹全喜. 二维圆柱形光子晶体的完全禁带研究. 物理学报, 2008, 57(5): 3249-3253. doi: 10.7498/aps.57.3249
    [15] 赵明明, 吕燕伍, 余家新, 庞许倩. 旋转对二维正方晶格介质柱内空结构光子晶体禁带的影响. 物理学报, 2008, 57(2): 1061-1065. doi: 10.7498/aps.57.1061
    [16] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [17] 汪静丽, 陈鹤鸣. 二维棋盘格子复式晶格的完全光子带隙研究. 物理学报, 2007, 56(2): 922-926. doi: 10.7498/aps.56.922
    [18] 陈德艳, 吕铁羽, 黄美纯. BaSe的准粒子能带结构. 物理学报, 2006, 55(7): 3597-3600. doi: 10.7498/aps.55.3597
    [19] 邬云文, 海文华, 蔡丽华. Paul阱中一维两离子系统的能带结构. 物理学报, 2006, 55(2): 583-589. doi: 10.7498/aps.55.583
    [20] 田 洁, 韩守振, 程丙英, 李志远, 冯 帅, 张道中, 金爱子. 部分空气桥式硅膜二维光子晶体. 物理学报, 2005, 54(3): 1218-1221. doi: 10.7498/aps.54.1218
计量
  • 文章访问数:  3214
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-11
  • 修回日期:  2016-04-14
  • 刊出日期:  2016-06-05

光子晶体理论研究的新方法混合变分法

    基金项目: 国家自然科学基金(批准号: 11274225) 和上海市自然科学基金(批准号: KW-201449732) 资助的课题.

摘要: 利用混合变分法研究了二维光子晶体的能带结构, 得到了通带、禁带和群速度, 并详细分析光子晶体中的电磁场分布和能流密度分布. 该方法方便实用, 理论上能够应用于任意维度任意周期结构的光子晶体的计算.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回