搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场作用下Cu熔体中富Fe颗粒的迁移与排列

左小伟 安佰灵 黄德洋 张林 王恩刚

引用本文:
Citation:

强磁场作用下Cu熔体中富Fe颗粒的迁移与排列

左小伟, 安佰灵, 黄德洋, 张林, 王恩刚

Migration and alignment of Fe-rich particles in Cu melt under high magnetic field

Zuo Xiao-Wei, An Bai-Ling, Huang De-Yang, Zhang Lin, Wang En-Gang
PDF
导出引用
  • 凝固界面前沿颗粒间的相互作用决定了颗粒的运动轨迹、分布和材料的性能, 控制熔体中颗粒的迁移可用于材料的净化和提纯. 在Cu-30%Fe合金液固两相区施加不同的强磁场条件, 富Fe颗粒的分布和排列不尽相同. 当无强磁场作用时, 富Fe颗粒较均匀地分布在Cu熔体中; 随着施加稳恒强磁场磁感应强度的增加, 富Fe颗粒向远离重力方向的试样上端迁移, 样品底部几乎无富Fe颗粒; 而施加向下的梯度磁场作用后, 富Fe颗粒沿重力方向向下迁移. 结合强磁场作用下颗粒的受力情况, 分析了Fe颗粒的迁移行为. 不同磁场条件和不同区域的颗粒直径统计分析表明, 随磁感应强度增加, Fe颗粒聚合增加, 但施加梯度强磁场后颗粒的团聚又逐渐减弱, 对此从影响颗粒运动的Stokes和Marangoni凝并速度进行了讨论. 从能量最低的角度解释了富Fe相沿平行磁场方向的取向排列.
    The interaction among particles in front of solid-liquid interface during solidification plays a role in determining the trajectories, distribution and sizes of particles, which eventually determines the properties of material. By using the interaction to control the migration of particles, impurity particles can be removed from the melt. A method of using an external high magnetic field to simulate the migration of Fe in Cu melt is proposed. Static high magnetic field (0.1 Tesla and 12 Tesla) and gradient high magnetic field (-92.1 T2/m) are subjected to the solid-liquid mushy zone of Cu-30 wt%Fe alloy. The case without high magnetic field is also investigated for comparison. Both macro- and microstructure of the samples are observed by optical microscope. The results indicate that primary Fe dendrites in Cu-Fe alloy are transformed into spherical Fe-rich particles after solidification in mushy zone, and high magnetic field is capable of changing the migration, distribution and arrangement of Fe-rich particles. In the absence of a static high magnetic field, Fe particles are distributed in Cu melt homogeneously. With increasing the magnetic flux density of imposed static high magnetic field, Fe-rich particles gradually migrate upwards. The migration direction is opposite to the direction of the gravity, and there are no Fe-rich particles kept on the bottom of the samples imposed by magnetic field. In the presence of negative high gradient magnetic field, however, the Fe-rich particles migrate downward and the direction is along the direction of the gravity. A model is built up to clarify the body force of Fe-rich particles and to analyze their movement while they are affected by high magnetic field. The results show that the migration behaviors of Fe-rich particles are related to the viscous dragging force, the interaction force between magnetic dipoles, and the magnetization force induced by gradient high magnetic field. The displacement of Fe particles is closely dependent on the body force. Through the analysis the experimental results are well explained. The diameters of Fe-rich particles are statically summarized under different high magnetic field conditions and in different zones. With increasing magnetic flux density of static high magnetic field, the aggregation of particles is increased. The magnetic field gradient, however, reduces the aggregation of particles. This might be as a result of the competitive coagulation between Stokes sedimentation and Marangoni migration in Cu melt. Microstructure of the samples indicates that Fe-rich particles tend to align along the direction of high magnetic field and the degree of alignment is likely to be related to external magnetic field strength, resistance force, effective time, and initial condition of particles, etc. As they are parallel to the direction of high magnetic field, the energy of the system is minimum, suggesting that the system is stable. The present study shed light on how to remove strong magnetic impurity from Cu melt.
      通信作者: 王恩刚, egwang@mail.neu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51474066, 51004038)、高等学校博士学科点专项科研基金(批准号: 20120042110008)、中央高校基本科研业务费专项资金(批准号: L1509004)和高等学校学科创新引智计划(批准号: B07015)资助的课题.
      Corresponding author: Wang En-Gang, egwang@mail.neu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51474066, 51004038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120042110008), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. L1509004), and the Program of Introducing Talents of Discipline to Universities (Grant No. B07015).
    [1]

    Garvin J W, Udaykumar H S 2004 J. Cryst. Growth 267 724

    [2]

    Ogasawara T, Yoshikawa N, Taniguchi S, Asai T 2004 Metall. Mater. Trans. B 35 847

    [3]

    Ueno K, Yasuda H 2003 Magnetohydrodynamics 39 547

    [4]

    Chester W, Moore D W 1961 J. Fluid Mech. 10 466

    [5]

    Chester W 1961 J. Fluid Mech. 10 459

    [6]

    Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloy. Compd. 623 36

    [7]

    Colli F, Fabbri M, Negrini F, Asai S, Sassa K 2003 International Conference on Heating by Internal Sources Padua, Italy, September 12-14, 2001 p58

    [8]

    Jin F W, Ren Z M, Rem W L, Deng K, Zhong Y B 2007 Acta Phys. Sin. 56 3851 (in Chinese) [晋芳伟, 任忠鸣, 任维丽, 邓康, 钟云波 2007 物理学报 56 3851]

    [9]

    Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2008 ISIJ Int. 48 901

    [10]

    Nakamoto M, Okumura Y, Tanaka T, Yamamoto T 2014 J. Iron Steel I. Jpn. 100 761

    [11]

    Liu T, Wang Q, Wang C J, Li H T, Wang Z Y, He J C 2011 Metall. Mater. Trans. A 42 1863

    [12]

    Wang Q, Liu T, Wang K, Wang C J, Nakajima K, He J C 2010 ISIJ Int. 50 1941

    [13]

    Yuan P P, Gu D D, Dai D H 2015 Mater. Design. 82 46

    [14]

    Wang E G, Zhang L, Zuo X W, He J C 2007 Steel Res. Int. 78 386

    [15]

    Zuo X W, Wang E G, Han H, Zhang L, He J C 2008 Acta Metall. Sin. 44 1219 (in Chinese) [左小伟, 王恩刚, 韩欢, 张林, 赫冀成 2008 金属学报 44 1219]

    [16]

    Nestler B, Wheeler A A, Ratke L, Stocker C 2000 Physica D 141 133

    [17]

    Kenjeres S, Pyrda L, Fornalik-Wajs E, Szmyd J S 2014 Flow. Turbul. Combust. 92 371

    [18]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]

    [19]

    Chikazumi S (translated by Ge S H) 2002 Physics of Ferromagnetism (Lanzhou: Lanzhou University Press) pp3-5 (in Chinese) [近角聪信 著 (葛世慧 译) 2002 铁磁性物理(兰州: 兰州大学出版社) 第3-5页]

    [20]

    Wu C Y, Li S Q, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [21]

    Waki N, Sassa K, Asai S 2000 J. Iron Steel I. Jpn. 86 363

    [22]

    Pitel J, Chovanec F 1999 IEEE Trans. Appl. Supercond. 9 382

    [23]

    Motokawa M 2004 Rep. Prog. Phys. 67 1995

    [24]

    Hirota N, Takayama T, Beaugnon E, Saito Y, Ando T, Nakamura H, Hara S, Ikezoe Y, Wada H, Kitazawa K 2005 J. Magn. Magn. Mater. 293 87

  • [1]

    Garvin J W, Udaykumar H S 2004 J. Cryst. Growth 267 724

    [2]

    Ogasawara T, Yoshikawa N, Taniguchi S, Asai T 2004 Metall. Mater. Trans. B 35 847

    [3]

    Ueno K, Yasuda H 2003 Magnetohydrodynamics 39 547

    [4]

    Chester W, Moore D W 1961 J. Fluid Mech. 10 466

    [5]

    Chester W 1961 J. Fluid Mech. 10 459

    [6]

    Zheng T X, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Debray F, Beaugnon E, Fautrelle Y 2015 J. Alloy. Compd. 623 36

    [7]

    Colli F, Fabbri M, Negrini F, Asai S, Sassa K 2003 International Conference on Heating by Internal Sources Padua, Italy, September 12-14, 2001 p58

    [8]

    Jin F W, Ren Z M, Rem W L, Deng K, Zhong Y B 2007 Acta Phys. Sin. 56 3851 (in Chinese) [晋芳伟, 任忠鸣, 任维丽, 邓康, 钟云波 2007 物理学报 56 3851]

    [9]

    Yuan Y, Sassa K, Iwai K, Wang Q, He J C, Asai S 2008 ISIJ Int. 48 901

    [10]

    Nakamoto M, Okumura Y, Tanaka T, Yamamoto T 2014 J. Iron Steel I. Jpn. 100 761

    [11]

    Liu T, Wang Q, Wang C J, Li H T, Wang Z Y, He J C 2011 Metall. Mater. Trans. A 42 1863

    [12]

    Wang Q, Liu T, Wang K, Wang C J, Nakajima K, He J C 2010 ISIJ Int. 50 1941

    [13]

    Yuan P P, Gu D D, Dai D H 2015 Mater. Design. 82 46

    [14]

    Wang E G, Zhang L, Zuo X W, He J C 2007 Steel Res. Int. 78 386

    [15]

    Zuo X W, Wang E G, Han H, Zhang L, He J C 2008 Acta Metall. Sin. 44 1219 (in Chinese) [左小伟, 王恩刚, 韩欢, 张林, 赫冀成 2008 金属学报 44 1219]

    [16]

    Nestler B, Wheeler A A, Ratke L, Stocker C 2000 Physica D 141 133

    [17]

    Kenjeres S, Pyrda L, Fornalik-Wajs E, Szmyd J S 2014 Flow. Turbul. Combust. 92 371

    [18]

    Zhang L, Wang E G, Zuo X W, He J C 2008 Acta Metall. Sin. 44 165 (in Chinese) [张林, 王恩刚, 左小伟, 赫冀成 2008 金属学报 44 165]

    [19]

    Chikazumi S (translated by Ge S H) 2002 Physics of Ferromagnetism (Lanzhou: Lanzhou University Press) pp3-5 (in Chinese) [近角聪信 著 (葛世慧 译) 2002 铁磁性物理(兰州: 兰州大学出版社) 第3-5页]

    [20]

    Wu C Y, Li S Q, Sassa K, Chino Y, Hattori K, Asai S 2005 Mater. Trans. 46 1311

    [21]

    Waki N, Sassa K, Asai S 2000 J. Iron Steel I. Jpn. 86 363

    [22]

    Pitel J, Chovanec F 1999 IEEE Trans. Appl. Supercond. 9 382

    [23]

    Motokawa M 2004 Rep. Prog. Phys. 67 1995

    [24]

    Hirota N, Takayama T, Beaugnon E, Saito Y, Ando T, Nakamura H, Hara S, Ikezoe Y, Wada H, Kitazawa K 2005 J. Magn. Magn. Mater. 293 87

  • [1] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响. 物理学报, 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [2] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控. 物理学报, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [4] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [5] 门福殿, 田青松, 陈新龙. 强磁场中弱相互作用费米气体的稳定性. 物理学报, 2014, 63(12): 120504. doi: 10.7498/aps.63.120504
    [6] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [7] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [8] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [9] 郑天祥, 钟云波, 孙宗乾, 王江, 吴秋芳, 冯美龙, 任忠鸣. 电磁复合场对Zn-10 wt%Bi过偏晶合金凝固组织的影响. 物理学报, 2012, 61(23): 238501. doi: 10.7498/aps.61.238501
    [10] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质. 物理学报, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [11] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [12] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [13] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [14] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [15] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [16] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [17] 王江, 钟云波, 任维丽, 雷作胜, 任忠鸣, 徐匡迪. 强磁场复合交变电流作用下Zn-30wt%Bi偏晶合金的凝固. 物理学报, 2009, 58(2): 893-900. doi: 10.7498/aps.58.893
    [18] 高 翱, 王 强, 王春江, 刘 铁, 张 超, 赫冀成. 强磁场条件下Mn-Sb梯度复合材料的制备. 物理学报, 2008, 57(2): 767-771. doi: 10.7498/aps.57.767
    [19] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [20] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
计量
  • 文章访问数:  2698
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-30
  • 修回日期:  2016-04-28
  • 刊出日期:  2016-07-05

强磁场作用下Cu熔体中富Fe颗粒的迁移与排列

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819
  • 通信作者: 王恩刚, egwang@mail.neu.edu.cn
    基金项目: 国家自然科学基金(批准号: 51474066, 51004038)、高等学校博士学科点专项科研基金(批准号: 20120042110008)、中央高校基本科研业务费专项资金(批准号: L1509004)和高等学校学科创新引智计划(批准号: B07015)资助的课题.

摘要: 凝固界面前沿颗粒间的相互作用决定了颗粒的运动轨迹、分布和材料的性能, 控制熔体中颗粒的迁移可用于材料的净化和提纯. 在Cu-30%Fe合金液固两相区施加不同的强磁场条件, 富Fe颗粒的分布和排列不尽相同. 当无强磁场作用时, 富Fe颗粒较均匀地分布在Cu熔体中; 随着施加稳恒强磁场磁感应强度的增加, 富Fe颗粒向远离重力方向的试样上端迁移, 样品底部几乎无富Fe颗粒; 而施加向下的梯度磁场作用后, 富Fe颗粒沿重力方向向下迁移. 结合强磁场作用下颗粒的受力情况, 分析了Fe颗粒的迁移行为. 不同磁场条件和不同区域的颗粒直径统计分析表明, 随磁感应强度增加, Fe颗粒聚合增加, 但施加梯度强磁场后颗粒的团聚又逐渐减弱, 对此从影响颗粒运动的Stokes和Marangoni凝并速度进行了讨论. 从能量最低的角度解释了富Fe相沿平行磁场方向的取向排列.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回