搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响

唐士惠 操秀霞 何林 祝文军

引用本文:
Citation:

空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响

唐士惠, 操秀霞, 何林, 祝文军

Effects of vacancy point defects and phase transitions on optical properties of shocked Al2O3

Tang Shi-Hui, Cao Xiu-Xia, He Lin, Zhu Wen-Jun
PDF
导出引用
  • 为了探究冲击压缩下蓝宝石光学性质的变化行为, 本文采用第一性原理方法, 在180 GPa的压力范围内计算了蓝宝石理想晶体和含空位点缺陷晶体的光学性质. 吸收光谱数据表明, 仅考虑压力和温度因素不能解释冲击消光实验的结果, 而冲击诱导的氧离子空位点缺陷应该是导致该结果的一个重要原因. 波长在532 nm处的折射率数据表明: 1)蓝宝石的两个高压结构相变将导致其折射率明显上升; 在Corundum和Rh2O3相区, 其折射率将随冲击压力增大而降低; 在CalrO3相区, 压力小于172 GPa时, 其折射率随冲击压力增大而缓慢地降低, 但172 GPa以上时折射率却随冲击压力增大而逐渐增大; 2)空位点缺陷对折射率随冲击压力的变化规律有明显的影响. 本文结果不仅有助于增强用空位点缺陷的物理机理来解释蓝宝石冲击透明性损伤现象的可靠性, 而且对未来进一步的实验研究以及发展新型窗口材料有重要的参考作用.
    The velocity interferometer system for any reflector (VISAR) and pyrometric measurements in dynamic highpressure experiments require the use of an optical window, and Alumina (Al2O3) or sapphires is often considered as a window material due to its high shock impedance and excellent transparency. Consequently, understanding the characteristics of its transparency and refractive index change under shock loading is crucial for explaining such experimental data. Experimental studies indicate optical transparency loss in shocked Al2O3. The mechanisms for the phenomenon are some interesting issues. A first-principles study suggests that shock-induced VO+2 (the +2 charged O vacancy) defects in Al2O3 could be an important factor causing the transparency loss. Recently, the red shift of the extinction curve (i.e., the wavelength dependence of the extinction coefficient) with increasing shock pressure has been observed. It is needed to ascertain whether this behavior is also related to shock-induced vacancy point defects. In addition, up to now, information about Al2O3 refractive index at a wavelength of 532 nm under strong shock compression (the optical source wavelength in VISAR measurement is usually set at 532 nm) has been unknown, and neither the effects of structural transitions nor vacancy point defects on the refractive index of shocked Al2O3 are determined. Here, to investigate the above-mentioned questions, we perform first principles calculations of optical absorption and refractive index properties of Al2O3 crystal without and with VO+2 and VAl3 (the -3 charged Al vacancy) defects in a pressure range of 180 GPa (the calculations in CASTEP are carried out by the plane-wave pseudo potential method in the framework of the density functional theory). Our absorption data show that the observed optical extinction in shocked Al2O3 cannot be explained by only considering pressure and temperature factors, but shock-induced VO+2 should be an important source for this behavior. On the basis of these results, we may judge that 1) the transparency loss explanation for shocked Al2O3 in the view of vacancy point defects is reasonable; 2) the absorption extinction should dominate the extinction phenomenon observed in shocked Al2O3. Our calculations find that high-pressure structural transition in Al2O3 causes an obvious enhancement of its refractive index. The refractive index decreases with increasing shock pressure in corundum and Rh2O3 regions, and decreases slightly below 172 GPa and increases slowly above 172 GPa with increasing shock pressure in CalrO3 region. The VO+2 and VAl3 defects in Al2O3 have apparent influences on the shock pressure dependence of its refractive index. These results mean that the information about Al2O3 refractive index under strong shock loading cannot be obtained simply by extrapolating its low pressure data. Our prediction could be of importance for future experimental study and new window-material development.
      通信作者: 何林, linhe63@163.com
    • 基金项目: 中国工程物理研究院压缩科学研究中心(批准号:YK2015-0602004)、国家自然科学基金(批准号:10299040)和四川省教育厅科研基金(批准号:13ZA0152)资助的课题.
      Corresponding author: He Lin, linhe63@163.com
    • Funds: Project Supported by CCS Project (Grant No. YK2015-0602004), the National Natural Science Foundation of China (Grant No. 10299040), and the Scientific Research Foundation of the Education Department of Sichuan Province, China (Grant No. 13ZA0152).
    [1]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828

    [2]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326

    [3]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 物理学报 56 4965]

    [4]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389

    [5]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522

    [6]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001

    [7]

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531 (in Chinese) [张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531]

    [8]

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese) [操秀霞 2011 硕士学位论文 (成都: 四川大学)]

    [9]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock-Loaded to 250-260 GPA. In Shock Compression of Condensed Matter-2001 : 12th APS Topical Conference Atlanta, Georgia (USA), June 24-29, 2001 p1231

    [10]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694

    [11]

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102 (in Chinese) [何旭, 何林, 唐明杰, 徐明 2011 物理学报 60 026102]

    [12]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [13]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

    [14]

    Wise J L, Chhabildas L C 1986 Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials (New York: Springer US) pp441-454

    [15]

    Setchell R E 2002 J. Appl. Phys. 91 2833

    [16]

    Fratanduono D E, Eggert J H, Akin M C, Chau R, Holmes N C 2013 J. Appl. Phys. 114 043518

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137

    [18]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [24]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341

    [25]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404

    [26]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager III J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457

    [27]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [28]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

  • [1]

    Oganov A R, Ono S 2005 Proc. Natl. Acad. Sci. USA 102 10828

    [2]

    Ono S, Oganov A R, Koyama T, Shimizu H 2006 Earth Planet. Sci. Lett. 246 326

    [3]

    Zhou X M, Wang X S, Li S N, Li J, Li J B, Jing F Q 2007 Acta Phys. Sin. 56 4965 (in Chinese) [周显明, 汪小松, 李赛男, 李俊, 李加波, 经福谦 2007 物理学报 56 4965]

    [4]

    Lin J F, Degtyareva O, Prewitt C T, Dera P, Sata N, Gregoryanz E, Mao H K, Hemley R J 2004 Nat. Mater. 3 389

    [5]

    Weir S T, Mitchell A C, Nellis W J 1996 J. Appl. Phys. 80 1522

    [6]

    He L, Tang M J, Fang Y, Jing F Q 2008 Europhys. Lett. 83 39001

    [7]

    Zhang D Y, Hao G Y, Zhang M J, Liu F S 2007 Journal of Synthetic Crystals 36 531 (in Chinese) [张岱宇, 郝高宇, 张明建, 刘福生 2007 人工晶体学报 36 531]

    [8]

    Cao X X 2011 M. S. Thesis (Chengdu: Sichuan University) (in Chinese) [操秀霞 2011 硕士学位论文 (成都: 四川大学)]

    [9]

    Hare D E, Webb D J, Lee S H, Holmes N C 2002 Optical Extinction of Sapphire Shock-Loaded to 250-260 GPA. In Shock Compression of Condensed Matter-2001 : 12th APS Topical Conference Atlanta, Georgia (USA), June 24-29, 2001 p1231

    [10]

    He L, Tang M J, Yin J, Zhou X M, Zhu W J, Liu F S, He D W 2012 Physica B 407 694

    [11]

    He X, He L, Tang M J, Xu M 2011 Acta Phys. Sin. 60 026102 (in Chinese) [何旭, 何林, 唐明杰, 徐明 2011 物理学报 60 026102]

    [12]

    Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S, Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese) [李雪梅, 俞宇颖, 李英华, 张林, 马云, 汪小松, 付秋卫 2010 物理学报 59 2691]

    [13]

    LaLone B M, Fat'yanov O V, Asay J R, Gupta Y M 2008 J. Appl. Phys. 103 093505

    [14]

    Wise J L, Chhabildas L C 1986 Laser Interferometer Measurements of Refractive Index in Shock-Compressed Materials (New York: Springer US) pp441-454

    [15]

    Setchell R E 2002 J. Appl. Phys. 91 2833

    [16]

    Fratanduono D E, Eggert J H, Akin M C, Chau R, Holmes N C 2013 J. Appl. Phys. 114 043518

    [17]

    He L, Tang M J, Zeng M F, Zhou X M, Zhu W J, Liu F S 2013 Physica B 410 137

    [18]

    Matsunaga K, Tanaka T, Yamamoto T, Lkuhara Y 2003 Phys. Rev. B 68 085110

    [19]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. : Condens. Matter 14 2717

    [20]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [21]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768

    [24]

    Zhang D Y, Liu F S, Hao G Y, Sun Y H 2007 Chin. Phys. Lett. 24 2341

    [25]

    Ching W Y, Xu Y N 1994 J. Am. Ceram. Soc. 77 404

    [26]

    Wu J, Walukiewicz W, Shan W, Yu K M, Ager III J W, Li S X, Haller E E, Lu H, Schaff W J 2003 J. Appl. Phys. 94 4457

    [27]

    Holm B, Ahuja R, Yourdshahyan Y, Johansson B, Lundqvist B I 1999 Phys. Rev. B 59 12777

    [28]

    Meyers M A 1994 Dynamic Behavior of Materials (New York: Wiley-IEEE) p413

  • [1] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [2] 李恬静, 操秀霞, 唐士惠, 何林, 孟川民. 蓝宝石冲击消光晶向效应的第一性原理. 物理学报, 2020, 69(4): 046201. doi: 10.7498/aps.69.20190955
    [3] 吕常伟, 王臣菊, 顾建兵. 高温高压下立方氮化硼和六方氮化硼的结构、力学、热力学、电学以及光学性质的第一性原理研究. 物理学报, 2019, 68(7): 077102. doi: 10.7498/aps.68.20182030
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [5] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究. 物理学报, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [6] 高敏, 舒文路, 叶强, 何林, 祝文军. 下地幔压力条件下(Mg0.97, Fe0.03)O方镁铁矿的光学性质. 物理学报, 2015, 64(11): 119101. doi: 10.7498/aps.64.119101
    [7] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [8] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究. 物理学报, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [9] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [10] 王海燕, 历长云, 高洁, 胡前库, 米国发. 高压下TiAl3结构及热动力学性质的第一性原理研究. 物理学报, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [11] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [12] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [13] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究. 物理学报, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [14] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] 焦照勇, 杨继飞, 张现周, 马淑红, 郭永亮. 闪锌矿GaN弹性性质、电子结构和光学性质外压力效应的理论研究. 物理学报, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [16] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算. 物理学报, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [19] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [20] 孙 博, 刘绍军, 祝文军. Fe在高压下第一性原理计算的芯态与价态划分. 物理学报, 2006, 55(12): 6589-6594. doi: 10.7498/aps.55.6589
计量
  • 文章访问数:  3053
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-16
  • 修回日期:  2016-05-11
  • 刊出日期:  2016-07-05

空位缺陷和相变对冲击压缩下蓝宝石光学性质的影响

  • 1. 四川师范大学物理与电子工程学院, 固体物理研究所, 成都 610101;
  • 2. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理重点实验室, 绵阳 621900
  • 通信作者: 何林, linhe63@163.com
    基金项目: 中国工程物理研究院压缩科学研究中心(批准号:YK2015-0602004)、国家自然科学基金(批准号:10299040)和四川省教育厅科研基金(批准号:13ZA0152)资助的课题.

摘要: 为了探究冲击压缩下蓝宝石光学性质的变化行为, 本文采用第一性原理方法, 在180 GPa的压力范围内计算了蓝宝石理想晶体和含空位点缺陷晶体的光学性质. 吸收光谱数据表明, 仅考虑压力和温度因素不能解释冲击消光实验的结果, 而冲击诱导的氧离子空位点缺陷应该是导致该结果的一个重要原因. 波长在532 nm处的折射率数据表明: 1)蓝宝石的两个高压结构相变将导致其折射率明显上升; 在Corundum和Rh2O3相区, 其折射率将随冲击压力增大而降低; 在CalrO3相区, 压力小于172 GPa时, 其折射率随冲击压力增大而缓慢地降低, 但172 GPa以上时折射率却随冲击压力增大而逐渐增大; 2)空位点缺陷对折射率随冲击压力的变化规律有明显的影响. 本文结果不仅有助于增强用空位点缺陷的物理机理来解释蓝宝石冲击透明性损伤现象的可靠性, 而且对未来进一步的实验研究以及发展新型窗口材料有重要的参考作用.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回