搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法

李倩倩 阳凡林 张凯 郑炳祥

引用本文:
Citation:

不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法

李倩倩, 阳凡林, 张凯, 郑炳祥

Moving source parameter estimation in an uncertain environment

Li Qian-Qian, Yang Fan-Lin, Zhang Kai, Zheng Bing-Xiang
PDF
导出引用
  • 环境参数失配导致定位性能大幅度下降是匹配场定位所面临的难题之一. 应用贝叶斯理论对环境聚焦,是当前解决该难题的研究热点. 环境聚焦方法的实质是将未知环境参数和声源位置联合优化估计. 然而,运动声源的位置时变性限制了观测时间长度和观测信息量,因此不得不利用很有限的观测信息来实现众多参数的估计. 当航速较快或是环境信息的不确定性较大时,环境聚焦方法的效果迅速变差. 借鉴卡尔曼滤波处理非平稳过程的参数估计思想,对航速较恒定的声源,本文将多个时刻的接收信号同时反演,引入能够描述声源位置随时间变化规律的时不变参数,以较少的时不变参数间接反演多个声源位置,从而有效降低待估参数维数. 同时将当前估计结果作为下一次反演的先验信息,建立新的先验分布和代价函数,有效补偿个别异常数据,实现运动声源的连续定位. 该方法在相同的环境不确定条件下,大幅度增加了观测时间和观测信息量,可以较好地改善环境聚焦方法的定位效果.
    Environmental uncertainty is one of the limiting factors in the matched-field localization. Within a Bayesian framework, environmental focalization has been widely used to solve the augmented localization problem, in which the environmental parameters, source ranges and depths are considered to be the unknown variables. However, the position of the moving source varies with time, which limits the observation interval and the number of acoustic signals. Therefore, it has to estimate lots of unknown parameters with the limited observation information. When the source moves fast or the environment has great uncertainty, the environmental focalization gets worse. Taking the parameter estimation of Kalman filter in the non-stationary process as a reference, the acoustic signals from a series of observations are treated in a simultaneous inversion. This provides the most informative solution, since data from multiple source locations are brought to bear simultaneously on the environmental unknowns, which in turn constrain the source locations better. In this article, the time-unvarying parameters are introduced to describe the source position. The source positions are inverted indirectly by the time-unvarying parameters, which reduces the estimated parameter dimension effectively. At the same time, the current estimated results are treated as the priori information of the next inversion, which establishes the new prior distribution and cost function. It could compensate for some individual abnormal data effectively and realize continuous localization of the moving source. The noise signals radiated from a surface ship target are processed and analyzed. The Bayesian tracking algorithm greatly increases the observation interval and the number of acoustic signals, and enhances the localization accuracy in an uncertain water environment. Tracking results of the ship noise indicate that simultaneous inversion of multiple acoustic observations with constant velocity track model and the Thikhonov regularization provides a better solution than sequential independent inversions. It is indicated that the Bayesian tracking method learns the uncertain environment as more observations become available. It is discovered that the maximum a posteriori solution and the two-dimensional solution have similar results according to the global positioning system value. The reason is that the source locations are treated implicitly by the source speed, which is similar to the marginal probability distribution by reducing the multidimensional posterior probability density to the representative two-dimensional probability distributions.
      通信作者: 李倩倩, lqq@mail.ioa.ac.cn
    • 基金项目: 山东科技大学人才引进科研启动基金(批准号:2014RCJJ004)、测绘公益性行业科研专项经费(批准号:201512034)和国家自然科学基金(批准号:41506111,41376108)资助的课题.
      Corresponding author: Li Qian-Qian, lqq@mail.ioa.ac.cn
    • Funds: Project supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents, China (Grant No. 2014RCJJ004), the Public Science and Technology Research Funds of Surveying and Mapping, China (Grant No. 201512034), and the National Natural Science Foundation of China (Grant Nos. 41506111, 41376108).
    [1]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [2]

    Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 145 (in Chinese) [秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145]

    [3]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [4]

    Vaccaro R J, Chhetri A, Harrison B F 2004 J. Acoust. Soc. Am. 115 3010

    [5]

    Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese) [莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302]

    [6]

    Fawcett J A, Maranda B H 1994 J. Acoust. Soc. Am. 96 1047

    [7]

    Schmidt H, Baggeroer A B, Kuperman W A, Sheer E K 1990 J. Acoust. Soc. Am. 88 1851

    [8]

    Rihardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280

    [9]

    Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496 (in Chinese) [杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496]

    [10]

    Seong W, Byun S H 2002 IEEE J.Oceanic Eng. 27 642

    [11]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410

    [12]

    Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808

    [13]

    Dosso S E, Wilmut M J 2007 J. Acoust. Soc. Am. 121 2567

    [14]

    Tantum S L, Nolte L W 1998 J. Acoust. Soc. Am. 103 362

    [15]

    Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82

    [16]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [17]

    Dosso S E, Wilmut M J 2010 J. Acoust. Soc. Am. 128 66

    [18]

    Gerstoft P 1997 SAGA Users Guide 2.0, an Inversion Software Package (La Spezia: SACLANT Undersea Research Center) pp01-132

    [19]

    Li Z L, Yan J, Li F H 2002 Acta Acustica 27 487 (in Chinese) [李整林, 郡锦, 李风华 2002 声学学报 27 487]

    [20]

    Jensen F B, Ferla F C 1979 SNAP: The SACLANTCEN Normal-mode Acoustic Propagation Model (La Spezia: SACLANTCEN) pp1-99

    [21]

    Li Q Q, Li Z L, Zhang R H 2014 Acta Acustica 39 535 (in Chinese) [李倩倩, 李整林, 张仁和 2014 声学学报 39 535]

  • [1]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [2]

    Qin J X, Katsnelson B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 145 (in Chinese) [秦继兴, Katsnelson Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 145]

    [3]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [4]

    Vaccaro R J, Chhetri A, Harrison B F 2004 J. Acoust. Soc. Am. 115 3010

    [5]

    Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302 (in Chinese) [莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302]

    [6]

    Fawcett J A, Maranda B H 1994 J. Acoust. Soc. Am. 96 1047

    [7]

    Schmidt H, Baggeroer A B, Kuperman W A, Sheer E K 1990 J. Acoust. Soc. Am. 88 1851

    [8]

    Rihardson A M, Nolte L W 1991 J. Acoust. Soc. Am. 89 2280

    [9]

    Yang K D, Ma Y L, Zou S X, Lei B 2006 Acta Acustica 31 496 (in Chinese) [杨坤德, 马远良, 邹士新, 雷波 2006 声学学报 31 496]

    [10]

    Seong W, Byun S H 2002 IEEE J.Oceanic Eng. 27 642

    [11]

    Collins M D, Kuperman W A 1991 J. Acoust. Soc. Am. 90 1410

    [12]

    Gerstoft P, Mecklenbrauker C F 1998 J. Acoust. Soc. Am. 104 808

    [13]

    Dosso S E, Wilmut M J 2007 J. Acoust. Soc. Am. 121 2567

    [14]

    Tantum S L, Nolte L W 1998 J. Acoust. Soc. Am. 103 362

    [15]

    Dosso S E, Wilmut M J 2008 J. Acoust. Soc. Am. 124 82

    [16]

    Dosso S E, Wilmut M J 2009 J. Acoust. Soc. Am. 125 717

    [17]

    Dosso S E, Wilmut M J 2010 J. Acoust. Soc. Am. 128 66

    [18]

    Gerstoft P 1997 SAGA Users Guide 2.0, an Inversion Software Package (La Spezia: SACLANT Undersea Research Center) pp01-132

    [19]

    Li Z L, Yan J, Li F H 2002 Acta Acustica 27 487 (in Chinese) [李整林, 郡锦, 李风华 2002 声学学报 27 487]

    [20]

    Jensen F B, Ferla F C 1979 SNAP: The SACLANTCEN Normal-mode Acoustic Propagation Model (La Spezia: SACLANTCEN) pp1-99

    [21]

    Li Q Q, Li Z L, Zhang R H 2014 Acta Acustica 39 535 (in Chinese) [李倩倩, 李整林, 张仁和 2014 声学学报 39 535]

  • [1] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2022, 71(2): 024301. doi: 10.7498/aps.71.20211518
    [2] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响. 物理学报, 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [3] 任超, 黄益旺, 夏峙. 宽频带海洋环境噪声矢量场空间相关特性建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211518
    [4] 江鹏飞, 林建恒, 孙军平, 衣雪娟. 考虑噪声源深度分布的海洋环境噪声模型及地声参数反演. 物理学报, 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [5] 尹诗白, 王卫星, 王一斌, 李大鹏, 邓箴. 贝叶斯迭代联合双边滤波的散焦图像快速盲复原. 物理学报, 2016, 65(23): 234202. doi: 10.7498/aps.65.234202
    [6] 文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法. 物理学报, 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [7] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [8] 苏林, 马力, 孙炳文, 郭圣明. 基于压缩拷贝场向量的空域滤波器设计. 物理学报, 2014, 63(10): 104302. doi: 10.7498/aps.63.104302
    [9] 张同伟, 杨坤德. 一种水平变化波导中匹配场定位的虚拟时反实现方法. 物理学报, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [10] 刘宗伟, 孙超, 向龙凤, 易锋. 不确定海洋环境中的模态子空间重构稳健定位方法. 物理学报, 2014, 63(3): 034304. doi: 10.7498/aps.63.034304
    [11] 王娇, 周云辉, 黄玉清, 江虹. 基于贝叶斯网络的认知引擎设计与重配置. 物理学报, 2013, 62(3): 038402. doi: 10.7498/aps.62.038402
    [12] 刘宗伟, 孙超, 杜金燕. 不确定海洋声场中的检测性能损失环境敏感度度量. 物理学报, 2013, 62(6): 064303. doi: 10.7498/aps.62.064303
    [13] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [14] 时洁, 杨德森, 时胜国. 基于矢量阵的运动声源柱面聚焦定位方法试验研究. 物理学报, 2012, 61(12): 124302. doi: 10.7498/aps.61.124302
    [15] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究. 物理学报, 2012, 61(5): 054306. doi: 10.7498/aps.61.054306
    [16] 颜鹏程, 侯威, 钱忠华, 何文平, 孙建安. 基于贝叶斯理论的全球海温异常对500 hPa 温度场的影响分析. 物理学报, 2012, 61(13): 139202. doi: 10.7498/aps.61.139202
    [17] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [18] 时洁, 杨德森, 时胜国. 基于最差性能优化的运动声源稳健聚焦定位识别方法研究. 物理学报, 2011, 60(6): 064301. doi: 10.7498/aps.60.064301
    [19] 杨殿阁, 罗禹贡, 李兵, 李克强, 连小珉. 基于时域多普勒修正的运动声全息识别方法. 物理学报, 2010, 59(7): 4738-4747. doi: 10.7498/aps.59.4738
    [20] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
计量
  • 文章访问数:  3299
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-06-14
  • 刊出日期:  2016-08-05

不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法

  • 1. 山东科技大学测绘科学与工程学院, 青岛 266590;
  • 2. 中国科学院声学研究所, 声场声信息国家重点实验室, 北京 100190;
  • 3. 海洋石油工程(青岛)有限公司, 青岛 266520
  • 通信作者: 李倩倩, lqq@mail.ioa.ac.cn
    基金项目: 山东科技大学人才引进科研启动基金(批准号:2014RCJJ004)、测绘公益性行业科研专项经费(批准号:201512034)和国家自然科学基金(批准号:41506111,41376108)资助的课题.

摘要: 环境参数失配导致定位性能大幅度下降是匹配场定位所面临的难题之一. 应用贝叶斯理论对环境聚焦,是当前解决该难题的研究热点. 环境聚焦方法的实质是将未知环境参数和声源位置联合优化估计. 然而,运动声源的位置时变性限制了观测时间长度和观测信息量,因此不得不利用很有限的观测信息来实现众多参数的估计. 当航速较快或是环境信息的不确定性较大时,环境聚焦方法的效果迅速变差. 借鉴卡尔曼滤波处理非平稳过程的参数估计思想,对航速较恒定的声源,本文将多个时刻的接收信号同时反演,引入能够描述声源位置随时间变化规律的时不变参数,以较少的时不变参数间接反演多个声源位置,从而有效降低待估参数维数. 同时将当前估计结果作为下一次反演的先验信息,建立新的先验分布和代价函数,有效补偿个别异常数据,实现运动声源的连续定位. 该方法在相同的环境不确定条件下,大幅度增加了观测时间和观测信息量,可以较好地改善环境聚焦方法的定位效果.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回