搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩拷贝场向量的空域滤波器设计

苏林 马力 孙炳文 郭圣明

引用本文:
Citation:

基于压缩拷贝场向量的空域滤波器设计

苏林, 马力, 孙炳文, 郭圣明

Spatial filter design based on compressed replica vectors

Su Lin, Ma Li, Sun Bing-Wen, Guo Sheng-Ming
PDF
导出引用
  • 近几十年来,匹配场处理技术得到了广泛深入的研究,并针对实际应用提出了一系列的具体处理算法. 当感兴趣的水下目标信号被水面强干扰信号掩蔽时,对水下目标的匹配场处理定位性能显著下降. 现有的广义空域滤波器可以抑制水面强干扰,但计算速度较慢并且内存消耗较大. 提出了一种基于压缩拷贝场算法的空域滤波器设计方案,并通过非相干叠加处理宽带问题. 相对于现有的空域滤波器,当接收阵元数N大于波导中有效简正波号数Q时,该滤波器可以大幅度缩减计算时间、节约运行内存,并且保持了对水面强干扰的抑制性能. 针对近岸浅海环境进行了仿真计算,并给出了一些近岸浅海海域试验数据处理结果,验证了该空域滤波器的性能和对计算速度的提升. 结果表明,应用基于压缩拷贝向量的矩阵滤波器对强干扰下的弱目标进行宽带非相干匹配场定位,可实现水下目标的有效区分.
    Matched field processing techniques have been studied extensively in recent decades, and a lot of detail algorithms have been put forward for practical use. When the underwater target is obscured by the strong surface interferences, the performance of matched field processing localization will degrade severely. The now existing spatial filter technique can be used to suppress the surface interferences, but the burden of calculation is heavy and the memory usage is large. In this paper, a scheme of optimizing spatial filter design based on the compressed replica vectors is presented, and the broadband data are processed incoherently. In contrary to the existing spatial filter, the optimized spatial filter can effectively reduce the computational complexity and memory usage when the number of array elements N is greater than the number of the effective modes Q, meanwhile, it also retains the original performance of interference suppression. Numerical simulations in a littoral shallow water environment are performed to validate the performance of the spatial filter and the promotion of computation speed. Then, data processing results obtained from an experiment conducted in the littoral shallow water environment are presented. It follows from the results that the weak underwater target can be distinguished from the strong surface interference clearly by use of the incoherent matched field processing with the application of the spatial filter based on compressed replica vectors.
    • 基金项目: 国家自然科学基金(批准号:11004214,11274338)资助的课题.
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant Nos. 11004214, 11274338).
    [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401

    [2]

    Tolstoy A 1993 Matched Field Processing for Underwater Acoustic (Singapore: World Scientific Publishing Co. Pte. Ltd.) pp11-41

    [3]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [4]

    Mirkin A N, Sibul L H 1994 J. Acoust. Soc. Am. 95 877

    [5]

    Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 1909 (in Chinese)[鄢社锋, 马远良 2004 科学通报 49 1909]

    [6]

    Antoniou A, Lu W S 2007 Practical Optimization: Algorithms and Engineering Applications (Berlin: Springer) p408

    [7]

    Lu W S 2007 Use SeDuMi to Solve LP, SDP, and SCOP Problems: Remarks and Examples (Victoria: University of Victoria) p1

    [8]

    Zhang S D, Han L, Han D 2011 Underwater Acoust. Eng. 35 67 (in Chinese) [张书第, 韩磊, 韩东 2011 水声工程 35 67]

    [9]

    Yan S F, Hou C H, Ma X C 2007 Acta Acust. 32 151 (in Chinese) [鄢社锋, 侯朝焕, 马晓川 2007 声学学报 32 151]

    [10]

    Vaccaro R J, Chhetri A, Brian F 2004 J. Acoust. Soc. Am. 115 3010

    [11]

    Boyd S P, Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press) p525

    [12]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [13]

    Soares C, Sergio M J 2003 J. Acoust. Soc. Am. 113 2587

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (Berlin: Springer) p339

    [15]

    Guo S M 2000 Ph. D. Dissertation (Beijing: Institute of Acoustics, China Academy of Sciences) (in Chinese) [郭圣明 2000 博士学位论文 (北京: 中国科学院声学研究所)]

    [16]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401

    [2]

    Tolstoy A 1993 Matched Field Processing for Underwater Acoustic (Singapore: World Scientific Publishing Co. Pte. Ltd.) pp11-41

    [3]

    Ying Y Z, Ma L, Guo S M 2011 Chin. Phys. B 20 054301

    [4]

    Mirkin A N, Sibul L H 1994 J. Acoust. Soc. Am. 95 877

    [5]

    Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 1909 (in Chinese)[鄢社锋, 马远良 2004 科学通报 49 1909]

    [6]

    Antoniou A, Lu W S 2007 Practical Optimization: Algorithms and Engineering Applications (Berlin: Springer) p408

    [7]

    Lu W S 2007 Use SeDuMi to Solve LP, SDP, and SCOP Problems: Remarks and Examples (Victoria: University of Victoria) p1

    [8]

    Zhang S D, Han L, Han D 2011 Underwater Acoust. Eng. 35 67 (in Chinese) [张书第, 韩磊, 韩东 2011 水声工程 35 67]

    [9]

    Yan S F, Hou C H, Ma X C 2007 Acta Acust. 32 151 (in Chinese) [鄢社锋, 侯朝焕, 马晓川 2007 声学学报 32 151]

    [10]

    Vaccaro R J, Chhetri A, Brian F 2004 J. Acoust. Soc. Am. 115 3010

    [11]

    Boyd S P, Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press) p525

    [12]

    Bucker H P 1976 J. Acoust. Soc. Am. 59 368

    [13]

    Soares C, Sergio M J 2003 J. Acoust. Soc. Am. 113 2587

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (Berlin: Springer) p339

    [15]

    Guo S M 2000 Ph. D. Dissertation (Beijing: Institute of Acoustics, China Academy of Sciences) (in Chinese) [郭圣明 2000 博士学位论文 (北京: 中国科学院声学研究所)]

    [16]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [3] 贾雨晴, 苏林, 郭圣明, 马力. 基于简正波分解的不同阵列匹配场定位性能分析. 物理学报, 2018, 67(17): 174302. doi: 10.7498/aps.67.20180124
    [4] 王吉明, 赫崇君, 刘友文, 杨凤, 田威, 吴彤. 基于可调谐复振幅滤波器的超长焦深矢量光场. 物理学报, 2016, 65(4): 044202. doi: 10.7498/aps.65.044202
    [5] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [6] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [7] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [8] 刘洋洋, 廉保旺, 赵宏伟, 刘亚擎. Kalman滤波辅助的室内伪卫星相对定位算法. 物理学报, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [9] 张同伟, 杨坤德. 一种水平变化波导中匹配场定位的虚拟时反实现方法. 物理学报, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [10] 文侨, 王凯歌, 邵永红, 屈军乐, 牛憨笨. 基于偏振滤波图像增强和动态散斑照明的宽场荧光层析显微镜. 物理学报, 2013, 62(3): 034203. doi: 10.7498/aps.62.034203
    [11] 李小刚, 李芳, 何志聪. 双色场驱动下高次谐波的径向量子轨道干涉. 物理学报, 2013, 62(8): 087201. doi: 10.7498/aps.62.087201
    [12] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [13] 刘青伦, 王自成, 刘濮鲲, 董芳. 基于场匹配法的双排矩形栅慢波结构高频特性研究. 物理学报, 2012, 61(24): 244102. doi: 10.7498/aps.61.244102
    [14] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
    [15] 罗勇, 李宏福, 谢仲怜, 喻胜, 邓学, 赵青, 徐勇. 含有吸收介质的突变结构腔体场匹配分析. 物理学报, 2004, 53(1): 229-234. doi: 10.7498/aps.53.229
    [16] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [17] 刘录新. 相对论热力学向量理论对Schwarzschild场中物质系统特性的研究. 物理学报, 1997, 46(12): 2300-2304. doi: 10.7498/aps.46.2300
    [18] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [19] 王世坤, 沈建民, 郭汉英. Riemann面上多极点亚纯向量场的代数及其在亚纯λ-微分的实现(Ⅱ). 物理学报, 1990, 39(7): 1-7. doi: 10.7498/aps.39.1-4
    [20] 王世坤, 沈建民, 郭汉英. Riemann面上多极点亚纯向量场的代数及其在亚纯λ-微分的实现(Ⅰ). 物理学报, 1990, 39(4): 511-517. doi: 10.7498/aps.39.511
计量
  • 文章访问数:  2963
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-24
  • 修回日期:  2014-02-21
  • 刊出日期:  2014-05-05

基于压缩拷贝场向量的空域滤波器设计

  • 1. 中国科学院声学研究所, 北京 100190;
  • 2. 中国科学院水声环境特性重点实验室, 北京 100190;
  • 3. 中国科学院大学, 北京 100049
    基金项目: 国家自然科学基金(批准号:11004214,11274338)资助的课题.

摘要: 近几十年来,匹配场处理技术得到了广泛深入的研究,并针对实际应用提出了一系列的具体处理算法. 当感兴趣的水下目标信号被水面强干扰信号掩蔽时,对水下目标的匹配场处理定位性能显著下降. 现有的广义空域滤波器可以抑制水面强干扰,但计算速度较慢并且内存消耗较大. 提出了一种基于压缩拷贝场算法的空域滤波器设计方案,并通过非相干叠加处理宽带问题. 相对于现有的空域滤波器,当接收阵元数N大于波导中有效简正波号数Q时,该滤波器可以大幅度缩减计算时间、节约运行内存,并且保持了对水面强干扰的抑制性能. 针对近岸浅海环境进行了仿真计算,并给出了一些近岸浅海海域试验数据处理结果,验证了该空域滤波器的性能和对计算速度的提升. 结果表明,应用基于压缩拷贝向量的矩阵滤波器对强干扰下的弱目标进行宽带非相干匹配场定位,可实现水下目标的有效区分.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回