搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种水平变化波导中匹配场定位的虚拟时反实现方法

张同伟 杨坤德

引用本文:
Citation:

一种水平变化波导中匹配场定位的虚拟时反实现方法

张同伟, 杨坤德

A virtual time reversal method for passive source localization in a range-dependent waveguide

Zhang Tong-Wei, Yang Kun-De
PDF
导出引用
  • 在水平变化波导中,匹配场被动定位的计算量非常大,严重阻碍了其工程应用. 本文提出了一种水平变化波导中匹配场定位的虚拟时反实现方法,其抛物方程模型计算网格总数远小于匹配场处理,从而大大减小计算代价. 与匹配场处理不同,虚拟时反实现方法是一个利用介质互易性和叠加性的后向传输过程. 通过在各水听器位置放置虚拟声源,并在搜索区域产生相应的模糊平面,对各个模糊平面进行相应加权求和,获得的定位模糊平面. 利用地中海浅海实验数据验证了虚拟时反实现方法的快速性能.
    Matched-field replica vector should be calculated using parabolic equation in a range-dependent waveguide, this means that the matched-field localization is too computationally intensive, hence its engineering application is seriously hindered. A virtual time-reversal method for passive source localization for a range-dependent waveguide is presented. The number of parabolic equation computational grids in virtual time-reversal method is much smaller than that in matched-field processing for a range-dependent waveguide. Thus, the computational cost can be greatly reduced. Different from the matched-field processing, the virtual time-reversal method is a back-propagation process, which explores and utilizes the properties of reciprocity and superposition. It can be realized by weighting the replica surface with the complex conjugate of the data received on the corresponding element, followed by a summation of the processed received data. This performance of virtual time-reversal method for source localization is validated through numerical simulations and data from the Mediterranean Sea.
    • 基金项目: 国家自然科学基金(批准号:10774119,11174235),教育部新世纪优秀人才支持计划(NCET-08-0455),陕西省自然科学基础研究计划(批准号:SJ08F07)和声场声信息国家重点实验室基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774119, 11174235), the program for New Century Excellent Talents in University, China (Grant No. NCET-08-0455), the Natural Science Foundation of Shaanxi province, China (Grant No. SJ08F07), and the Foundation of National Laboratory of Acoustics.
    [1]

    Tolstoy A 1993 Matched field processing for underwater acoustics (Singapore: World Scientific) p10-12

    [2]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [3]

    Yang K D 2008 Matched-Field Processing for Underwater Acoustic Array Signals (Xi'an: Northwestern Polytechnical University Press) p165-167 (in Chinese) [杨坤德2008水声阵列信号的匹配场处理(西安: 西北工业大学出版社)第165–167页]

    [4]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acustica 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝辉, 李风华2002声学学报 28 425]

    [5]

    Liu Z W, Sun C, Xiang L F, Yi F 2014 Acta Phy. Sin. 63 034304 (in Chinese) [刘宗伟, 孙超, 向龙凤, 易锋 2014 物理学报 63 034304]

    [6]

    Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171

    [7]

    Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C, Jackson D R 1998 J. Acoust. Soc. Am. 103 25

    [8]

    Dungan M R, Dowling D R 2002 J. Acoust. Soc. Am. 112 1842

    [9]

    Yang C M, Luo W Y, Zhang R H, Qin j X 2013 Acta Phys. Sin. 62 94302

    [10]

    Zhang R H, Li F H 1999 Science in China, Ser. A 42 739

    [11]

    Katsnelson B G, Petnikov V G 2002 Shallow-Water Acoustics (Berlin: Springer-Verlag) p4-6

    [12]

    Zhou S H, Qi Y B, Ren Y 2014 Sci China-Phys Mech Astron 57 225

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phy. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p457-523

    [15]

    Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 2220

    [16]

    Collins M D 1991 J. Acoust. Soc. Am. 89 1050

    [17]

    Collins M D 1992 J. Acoust. Soc. Am. 92 2069

    [18]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [19]

    Gingras D F, Gerstoft P 1995 J. Acoust. Soc. Am. 97 3589

    [20]

    Gerstoft P, Gingras D F 1996 J. Acoust. Soc. Am. 99 2839

    [21]

    Krolik J L 1996 IEEE Trans. on Signal Processing 44 2605

  • [1]

    Tolstoy A 1993 Matched field processing for underwater acoustics (Singapore: World Scientific) p10-12

    [2]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Ocean. Eng. 18 401

    [3]

    Yang K D 2008 Matched-Field Processing for Underwater Acoustic Array Signals (Xi'an: Northwestern Polytechnical University Press) p165-167 (in Chinese) [杨坤德2008水声阵列信号的匹配场处理(西安: 西北工业大学出版社)第165–167页]

    [4]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acustica 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝辉, 李风华2002声学学报 28 425]

    [5]

    Liu Z W, Sun C, Xiang L F, Yi F 2014 Acta Phy. Sin. 63 034304 (in Chinese) [刘宗伟, 孙超, 向龙凤, 易锋 2014 物理学报 63 034304]

    [6]

    Jackson D R, Dowling D R 1991 J. Acoust. Soc. Am. 89 171

    [7]

    Kuperman W A, Hodgkiss W S, Song H C, Akal T, Ferla C, Jackson D R 1998 J. Acoust. Soc. Am. 103 25

    [8]

    Dungan M R, Dowling D R 2002 J. Acoust. Soc. Am. 112 1842

    [9]

    Yang C M, Luo W Y, Zhang R H, Qin j X 2013 Acta Phys. Sin. 62 94302

    [10]

    Zhang R H, Li F H 1999 Science in China, Ser. A 42 739

    [11]

    Katsnelson B G, Petnikov V G 2002 Shallow-Water Acoustics (Berlin: Springer-Verlag) p4-6

    [12]

    Zhou S H, Qi Y B, Ren Y 2014 Sci China-Phys Mech Astron 57 225

    [13]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phy. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [14]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) p457-523

    [15]

    Yan S F, Ma Y L 2004 Chin. Sci. Bull. 49 2220

    [16]

    Collins M D 1991 J. Acoust. Soc. Am. 89 1050

    [17]

    Collins M D 1992 J. Acoust. Soc. Am. 92 2069

    [18]

    Duan R, Yang K D, Ma Y L, Lei B 2012 Chin. Phys. B 21 124301

    [19]

    Gingras D F, Gerstoft P 1995 J. Acoust. Soc. Am. 97 3589

    [20]

    Gerstoft P, Gingras D F 1996 J. Acoust. Soc. Am. 99 2839

    [21]

    Krolik J L 1996 IEEE Trans. on Signal Processing 44 2605

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 周玉媛, 孙超, 谢磊. 基于轨迹泊松多伯努利混合滤波器的浅海匹配场连续跟踪方法. 物理学报, 2023, 72(18): 184301. doi: 10.7498/aps.72.20230124
    [3] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [4] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [5] 贾雨晴, 苏林, 郭圣明, 马力. 基于简正波分解的不同阵列匹配场定位性能分析. 物理学报, 2018, 67(17): 174302. doi: 10.7498/aps.67.20180124
    [6] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [7] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [8] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [9] 李倩倩, 阳凡林, 张凯, 郑炳祥. 不确定海洋环境中基于贝叶斯理论的声源运动参数估计方法. 物理学报, 2016, 65(16): 164304. doi: 10.7498/aps.65.164304
    [10] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [11] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [12] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [13] 苏林, 马力, 孙炳文, 郭圣明. 基于压缩拷贝场向量的空域滤波器设计. 物理学报, 2014, 63(10): 104302. doi: 10.7498/aps.63.104302
    [14] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [15] 赵龙, 颜廷君. 不同传感器精度下的地磁轮廓匹配定位性能分析. 物理学报, 2013, 62(6): 067702. doi: 10.7498/aps.62.067702
    [16] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [17] 计时鸣, 翁晓星, 谭大鹏. 基于水平集方法二维模型的软性磨粒两相流流场特性分析方法. 物理学报, 2012, 61(1): 010205. doi: 10.7498/aps.61.010205
    [18] 张同伟, 杨坤德, 马远良, 黎雪刚. 浅海中水平线列阵深度对匹配场定位性能的影响. 物理学报, 2010, 59(5): 3294-3301. doi: 10.7498/aps.59.3294
    [19] 林 敏, 毛谦敏, 郑永军, 李东升. 随机共振控制的频率匹配方法. 物理学报, 2007, 56(9): 5021-5025. doi: 10.7498/aps.56.5021
    [20] 杨德兴, 赵建林, 张 鹏, 李碧丽, 冯锡淇. LiNbO3:Fe晶体中光写入波导时折射率的变化规律. 物理学报, 2003, 52(5): 1179-1183. doi: 10.7498/aps.52.1179
计量
  • 文章访问数:  5422
  • PDF下载量:  412
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2014-05-31
  • 刊出日期:  2014-11-05

/

返回文章
返回