搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体光纤重叠光栅理论模型与光谱特性研究

江鹏 毕卫红 齐跃峰 付兴虎 武洋 田朋飞

引用本文:
Citation:

光子晶体光纤重叠光栅理论模型与光谱特性研究

江鹏, 毕卫红, 齐跃峰, 付兴虎, 武洋, 田朋飞

Theoretical model and spectrum characteristics of superimposed photonic crystal fiber grating

Jiang Peng, Bi Wei-Hong, Qi Yue-Feng, Fu Xing-Hu, Wu Yang, Tian Peng-Fei
PDF
导出引用
  • 本文对光子晶体光纤重叠光栅的传输光谱及特性进行了研究.在理论上,提出了基于V-I传输矩阵法的光子晶体光纤重叠光栅分析模型,仿真研究了布拉格叠栅和啁啾叠栅的反射谱和时延特性.在实验上,利用193 nm紫外激光在光敏单模光子晶体光纤中实验制备了定制波长间隔的四重布拉格重叠光栅和波长间隔0.82 nm的啁啾重叠光栅.研究结果显示布拉格光栅的重叠光栅可通过各子光栅写制参数实现光谱灵活定制;基于啁啾光栅的重叠光栅具有周期性宽带滤波特性,谐振周期可由光栅周期偏移调整,且具有平坦的幅度响应和呈良好线性的群时延.实验所得光栅光谱与理论分析很好地符合.研究结果为光子晶体光纤重叠光栅的设计、制备及应用提供了重要的参考依据.
    The superimposed gratings have attracted considerable interest because they can extend the potential applications of gratings. Superimposed gratings are fabricated by inscribing multiple gratings at the same section of the fiber, and they can demonstrate various features simultaneously. A number of optical devices based on superimposed gratings have been reported, such as multi-wavelength filters, beam shapers, ultrahigh repetition rate optical pulse generators, etc. Photonic crystal fiber (PCF) can bring new optical characteristics by changing the sizes, spacings and arrangements of the air holes in the fiber. In this paper, we present the spectra of the superimposed gratings inscribed in a photonic crystal fiber. A numerical mode is proposed based on the V-I transmission matrices. The traditional cosinoidal variation of refractive index is replaced with a square-type refractive index variation, and the scattering occurs at a localized discrete location. According to the simulations, the reflection spectra and time delays of a superimposed Bragg grating and superimposed chirped Bragg grating are analyzed. A superimposed Bragg grating and a superimposed chirped Bragg grating are fabricated in the single mode photosensitive PCFs under the irradiation of a 193 nm ultraviolet laser. The superimposed Bragg grating is composed of four subgratings with resonance wavelengths at set spacings. And under a phase mask displacement of 1.03 mm, the superimposed chirped Bragg grating has a periodic resonance with a period of 0.82 nm. The results show that the spectrum of superimposed Bragg grating can be flexibly customized by the parameters of each subgrating. Superimposed chirped Bragg gratings have good linear group delays and flat periodic resonance amplitudes, and the resonance period can be adjusted by displacing the phase mask. The grating spectra obtained from experiments are in good agreement with the theoretical analyses. The research results in this paper provide an important basis for designing, fabricating, and applying the superimposed PCF gratings.
      通信作者: 毕卫红, whbi@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475133,61275093,61575170)、河北省自然科学基金(批准号:F2015203277,F2016203389,F2016203392)和河北省应用基础研究计划重点基础研究项目(批准号:16961701D)资助的课题.
      Corresponding author: Bi Wei-Hong, whbi@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475133, 61275093, 61575170), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2015203277, F2016203389, F2016203392), and the Key Basic Research Program of Hebei Province, China (Grant No. 16961701D).
    [1]

    Liu L, Qin G S, Tian Q J, Zhao D, Qin W P 2014 J. Appl. Phys. 115 163102

    [2]

    Suzuki M, Baba M, Yoneya S, Kuroda H 2012 Appl. Phys. Lett. 101 191110

    [3]

    Woodward R I, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Lett. 39 2330

    [4]

    Huang W, Liu Y G, Wang Z, Liu B, Wang J 2014 Opt. Express 22 5883

    [5]

    Tian F, Kanka J, Du H 2012 Opt. Express 20 20951

    [6]

    Zhong X, Wang Y, Liao C, Liu S, Tang J, Wang Q 2015 Opt. Lett. 40 1791

    [7]

    Ma Y C, Liu H Y, Yan S B, Yang Y H, Yang M W, Li J M, Tang J 2013 Meas. Sci. Technol. 24 55201

    [8]

    Sumetsky M, Ramachandran S 2008 Opt. Express 16 402

    [9]

    Garcíamuñoz V, Preciado M A, Muriel M A 2007 Opt. Express 15 10878

    [10]

    Han Y G, Dong X, Kim C S, Jeong M Y, Ju H L 2007 Opt. Express 15 2921

    [11]

    Wang C, Yao J 2008 IEEE Photonics Technol. Lett. 20 882

    [12]

    Triollet S, Robert L, Marin E, Ouerdane Y 2011 Meas. Sci. Technol. 22 298

    [13]

    Li T, Dong X, Chan C C, Zhao C L, Jin S 2011 IEEE Photonics Technol. Lett. 23 1706

    [14]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [15]

    Capmany J, Muriel M A 1990 J. Lightwave Technol. 8 1904

    [16]

    Capmany J, Muriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125

    [17]

    Garcia-Munoz V, Muriel M A, Capmany J 2005 IEEE Photonics Technol. Lett. 17 2343

  • [1]

    Liu L, Qin G S, Tian Q J, Zhao D, Qin W P 2014 J. Appl. Phys. 115 163102

    [2]

    Suzuki M, Baba M, Yoneya S, Kuroda H 2012 Appl. Phys. Lett. 101 191110

    [3]

    Woodward R I, Kelleher E J R, Popov S V, Taylor J R 2014 Opt. Lett. 39 2330

    [4]

    Huang W, Liu Y G, Wang Z, Liu B, Wang J 2014 Opt. Express 22 5883

    [5]

    Tian F, Kanka J, Du H 2012 Opt. Express 20 20951

    [6]

    Zhong X, Wang Y, Liao C, Liu S, Tang J, Wang Q 2015 Opt. Lett. 40 1791

    [7]

    Ma Y C, Liu H Y, Yan S B, Yang Y H, Yang M W, Li J M, Tang J 2013 Meas. Sci. Technol. 24 55201

    [8]

    Sumetsky M, Ramachandran S 2008 Opt. Express 16 402

    [9]

    Garcíamuñoz V, Preciado M A, Muriel M A 2007 Opt. Express 15 10878

    [10]

    Han Y G, Dong X, Kim C S, Jeong M Y, Ju H L 2007 Opt. Express 15 2921

    [11]

    Wang C, Yao J 2008 IEEE Photonics Technol. Lett. 20 882

    [12]

    Triollet S, Robert L, Marin E, Ouerdane Y 2011 Meas. Sci. Technol. 22 298

    [13]

    Li T, Dong X, Chan C C, Zhao C L, Jin S 2011 IEEE Photonics Technol. Lett. 23 1706

    [14]

    Erdogan T 1997 J. Lightwave Technol. 15 1277

    [15]

    Capmany J, Muriel M A 1990 J. Lightwave Technol. 8 1904

    [16]

    Capmany J, Muriel M A, Sales S, Rubio J J, Pastor D 2003 J. Lightwave Technol. 21 3125

    [17]

    Garcia-Munoz V, Muriel M A, Capmany J 2005 IEEE Photonics Technol. Lett. 17 2343

  • [1] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [2] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [3] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [4] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [5] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [6] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究. 物理学报, 2013, 62(3): 034208. doi: 10.7498/aps.62.034208
    [7] 娄淑琴, 王鑫, 鹿文亮. 一种新型侧漏型光子晶体光纤的研制及其传输特性研究. 物理学报, 2013, 62(8): 084216. doi: 10.7498/aps.62.084216
    [8] 夏长明, 周桂耀, 韩颖, 刘兆伦, 侯蓝田. V形高双折射光子晶体光纤特性研究. 物理学报, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [9] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析. 物理学报, 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [10] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究. 物理学报, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [11] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [12] 付博, 李曙光, 姚艳艳, 张磊, 张美艳, 刘司英. 双芯高双折射光子晶体光纤耦合特性研究. 物理学报, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [13] 季玲玲, 陈伟, 曹迎春, 杨振宇, 陆培祥. 双折射光子晶体光纤中基于孤子分裂的超连续光谱产生. 物理学报, 2009, 58(8): 5462-5466. doi: 10.7498/aps.58.5462
    [14] 延凤平, 李一凡, 王 琳, 龚桃荣, 刘 鹏, 刘 洋, 陶沛琳, 曲美霞, 简水生. 近椭圆内包层高双折射偏振稳定光子晶体光纤设计及特性分析. 物理学报, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [15] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [16] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [17] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [18] 任国斌, 王 智, 娄淑琴, 简水生. 光子晶体光纤模式的简并特性研究. 物理学报, 2004, 53(6): 1856-1861. doi: 10.7498/aps.53.1856
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤的导波模式与色散特性. 物理学报, 2003, 52(11): 2811-2817. doi: 10.7498/aps.52.2811
计量
  • 文章访问数:  3001
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-03
  • 修回日期:  2016-08-01
  • 刊出日期:  2016-10-05

光子晶体光纤重叠光栅理论模型与光谱特性研究

  • 1. 燕山大学信息科学与工程学院, 秦皇岛 066004;
  • 2. 河北省特种光纤与光纤传感重点实验室, 秦皇岛 066004
  • 通信作者: 毕卫红, whbi@ysu.edu.cn
    基金项目: 国家自然科学基金(批准号:61475133,61275093,61575170)、河北省自然科学基金(批准号:F2015203277,F2016203389,F2016203392)和河北省应用基础研究计划重点基础研究项目(批准号:16961701D)资助的课题.

摘要: 本文对光子晶体光纤重叠光栅的传输光谱及特性进行了研究.在理论上,提出了基于V-I传输矩阵法的光子晶体光纤重叠光栅分析模型,仿真研究了布拉格叠栅和啁啾叠栅的反射谱和时延特性.在实验上,利用193 nm紫外激光在光敏单模光子晶体光纤中实验制备了定制波长间隔的四重布拉格重叠光栅和波长间隔0.82 nm的啁啾重叠光栅.研究结果显示布拉格光栅的重叠光栅可通过各子光栅写制参数实现光谱灵活定制;基于啁啾光栅的重叠光栅具有周期性宽带滤波特性,谐振周期可由光栅周期偏移调整,且具有平坦的幅度响应和呈良好线性的群时延.实验所得光栅光谱与理论分析很好地符合.研究结果为光子晶体光纤重叠光栅的设计、制备及应用提供了重要的参考依据.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回