搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究

马振宁 周全 汪青杰 王逊 王磊

引用本文:
Citation:

Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究

马振宁, 周全, 汪青杰, 王逊, 王磊

First-principles study of the thermodynamic stabilities and electronic structures of long-period stacking ordered phases in Mg-Y-Cu alloys

Ma Zhen-Ning, Zhou Quan, Wang Qing-Jie, Wang Xun, Wang Lei
PDF
导出引用
  • 采用基于密度泛函的第一性原理平面波赝势方法计算了Mg-Y-Cu合金中长周期有序相14H和18R(18R(m),18R(t))的形成焓、反应能、电子态密度和电荷密度.计算结果表明,14H和18R相都具有负的形成焓,说明两相都能够由单质转变形成,并且18R相比14H相更容易形成,但14H相具有更好的热力学稳定性;14H和18R相的态密度分布形态和变化趋势相似,它们的成键峰均主要来自于Mg的3s轨道、Mg的2p轨道,Cu的3d轨道和Y的4d轨道的贡献,且在费米能级低能级区域产生了轨道杂化效应.14H相和18R相的成键都具有明显的共价性.通过对各相(0001)面的电荷密度分析表明,14H和18R相中的Cu原子和Y原子之间都形成了共价键,并且14H相的共价性比18R相的共价性更强.
    The long-period stacking ordered (LPSO) phases in magnesium alloys possess excellent mechanical performances, and have received considerable attention. The strengthening LPSO phases, such as 14H and 18R structures, are found experimentally in some Mg-Y-Cu alloys, which can significantly enhance the mechanical performances of the alloys.However, it is unknown which phase is more stable thermodynamically, and easier to form during the solidification. In this paper, thermodynamic stabilities and electronic characteristics of LPSO phases 14H and 18R (18R(m), 18R(t)) in Mg-Y-Cu alloys are investigated by the first-principles pseudopotential method based on the density functional theory. The present calculations are performed by using Vienna ab-initio simulation package (VASP) with projector-augmented plane wave pseudopotential, and the generalized gradient approximation is used to deal with and describe the exchange-correlation interaction. The plane wave cutoff energy is set to be 360 eV, the forces on all the atoms are less than 0.02 eV/. The k-point meshes of Brillouin zone sampling in a primitive cell are based on the Monkhorst-Pack scheme. The calculated enthalpies of formation indicate that the 14H and 18R phases coexist in Mg-Y-Cu alloys. The 18R phase has a larger absolute value of formation enthalpy, which means that it is easier to form than the 14H phase. The reaction energy is also computed for the transformation from the 18R phase to 14H phase, which shows that the 14H phase is more stable than the 18R phase. The results for density of states (DOS) reveal that the bondings of the 14H and 18R phases occur mainly among the valence electrons of Cu 3d, Y 4d, Mg 3s and Mg 2p orbits while those of Cu 4s, Y 4s and Y 4p orbits are very weak in the whole region. The bonding peaks of the 14H, 18R(m), and 18R(t) phases are localized, and the corresponding hybridization orbits, which are all or part of Mg 3s, Mg 2p, Cu 3d and Y 4d orbits, are determined. At the same time, there are sharp peaks on both sides of the Fermi level of the 14H, 18R(m) and 18R(t) phases, which shows that there exist pseudogaps in those phases. The presence of pseudogap indicates that the bonds in the 14H and 18R phases are noticeable covalent. In addition, the charge densities both on (0 0 0 1) plane of the 14H and 18R phases are analyzed in detail. The results show that the Cu-Y bond exhibits the covalent feature in the 14H and 18R phases, the covalent bonding of the 14H phase is stronger than that of the 18R phase, and it is the key reason that the 14H is more stable than the 18R. The calculated results for thermodynamic stabilities and electronic structures of LPSO phases will provide useful data for analyzing and designing Mg-Y-Cu alloys.
      通信作者: 马振宁, zhenningma@126.com
    • 基金项目: 国家自然科学基金(批准号:51261026)资助的课题.
      Corresponding author: Ma Zhen-Ning, zhenningma@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51261026).
    [1]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [2]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [3]

    Ono A, Abe E, Itoi T, Hirohashi M, Yamasaki M, Kawamura Y 2008 Trans. Mater. 49 990

    [4]

    Ping D H, Hono K, Kawamura Y, Inoue A 2002 Philos. Mag. Lett. 82 543

    [5]

    Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J 2001 J. Mater. Res. 16 1894

    [6]

    Itoi T, Seimiya T, Kawamura Y, Hirohashi M 2004 Scripta Mater. 51 107

    [7]

    Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [8]

    Yoshimoto S, Yamasaki M, Kawamura Y 2006 Mater. Trans. 47 959

    [9]

    Egusa D, Abe E 2012 Acta Mater. 60 166

    [10]

    Yamasaki M, Anan T Yoshimoto S, Kawamura Y 2005 Scr. Mater. 53 799

    [11]

    Itoi T, Takahashi K, Moriyama H, Hirohash M 2008 Scr. Mater. 59 1155

    [12]

    Kawamura Y, Kasahara T, Izumi S, Yamasaki M 2006 Scr. Mater. 55 453

    [13]

    Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K 2006 Mater. Trans. 47 1264

    [14]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese)[嘉明珍, 王红艳, 陈元正, 马存良, 王辉2015物理学报64 087101]

    [15]

    Zhu Y, Li Y C, Wang F H 2016 Acta Phys. Sin. 65 056801 (in Chinese)[朱玥, 李永成, 王福合2016物理学报65 056801]

    [16]

    Zhang H, Shang S, Saal J, Saengdeejing A, Wang Y, Chen L, Liu Z K 2009 Intermetallics 17 878

    [17]

    Shin D, Wolverton C 2010 Acta Mater. 58 531

    [18]

    Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531

    [19]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [20]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [21]

    Kimizuka H, Fronzia M, Ogata S 2013 Scr. Mater. 69 594

    [22]

    Tanaka R, Yuge K 2016 Intermetallics 72 25

    [23]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [24]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [28]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [29]

    Jiang M, Su X, Li H X, Ren Y P, Qin G W 2014 J. Alloys Compd. 593 141

    [30]

    Yi J X, Tang B Y, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys Compd. 509 669

  • [1]

    Kawamura Y, Hayashi K, Inoue A, Masumoto T 2001 Mater. Trans. 42 1172

    [2]

    Abe E, Kawamura Y, Hayashi K, Inoue A 2002 Acta Mater. 50 3845

    [3]

    Ono A, Abe E, Itoi T, Hirohashi M, Yamasaki M, Kawamura Y 2008 Trans. Mater. 49 990

    [4]

    Ping D H, Hono K, Kawamura Y, Inoue A 2002 Philos. Mag. Lett. 82 543

    [5]

    Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J 2001 J. Mater. Res. 16 1894

    [6]

    Itoi T, Seimiya T, Kawamura Y, Hirohashi M 2004 Scripta Mater. 51 107

    [7]

    Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M 2005 Mater. Sci. Eng. A 393 269

    [8]

    Yoshimoto S, Yamasaki M, Kawamura Y 2006 Mater. Trans. 47 959

    [9]

    Egusa D, Abe E 2012 Acta Mater. 60 166

    [10]

    Yamasaki M, Anan T Yoshimoto S, Kawamura Y 2005 Scr. Mater. 53 799

    [11]

    Itoi T, Takahashi K, Moriyama H, Hirohash M 2008 Scr. Mater. 59 1155

    [12]

    Kawamura Y, Kasahara T, Izumi S, Yamasaki M 2006 Scr. Mater. 55 453

    [13]

    Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K 2006 Mater. Trans. 47 1264

    [14]

    Jia M Z, Wang H Y, Chen Y Z, Ma C L, Wang H 2015 Acta Phys. Sin. 64 087101 (in Chinese)[嘉明珍, 王红艳, 陈元正, 马存良, 王辉2015物理学报64 087101]

    [15]

    Zhu Y, Li Y C, Wang F H 2016 Acta Phys. Sin. 65 056801 (in Chinese)[朱玥, 李永成, 王福合2016物理学报65 056801]

    [16]

    Zhang H, Shang S, Saal J, Saengdeejing A, Wang Y, Chen L, Liu Z K 2009 Intermetallics 17 878

    [17]

    Shin D, Wolverton C 2010 Acta Mater. 58 531

    [18]

    Datta A, Waghmare U V, Ramamurty U 2008 Acta Mater. 56 2531

    [19]

    Tang P Y, Wu M M, Tang B Y, Wang J W, Peng L M, Ding W J 2011 Trans. Nonferrous Met. Soc. China 21 801

    [20]

    Ma S Y, Liu L M, Wang S Q 2014 J. Mater. Sci. 49 737

    [21]

    Kimizuka H, Fronzia M, Ogata S 2013 Scr. Mater. 69 594

    [22]

    Tanaka R, Yuge K 2016 Intermetallics 72 25

    [23]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [24]

    Kresse G, Furthller J 1996 Comput. Mater. Sci. 6 15

    [25]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [26]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [27]

    Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272

    [28]

    Sahu B R 1997 Mater. Sci. Eng. B 49 74

    [29]

    Jiang M, Su X, Li H X, Ren Y P, Qin G W 2014 J. Alloys Compd. 593 141

    [30]

    Yi J X, Tang B Y, Chen P, Li D L, Peng L M, Ding W J 2011 J. Alloys Compd. 509 669

  • [1] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究. 物理学报, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [9] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [10] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [12] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究 . 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [14] 赵宇宏, 黄志伟, 李爱红, 穆彦青, 杨伟明, 侯华, 韩培德, 张素英. Nb在Ni3Al中取代行为及合金化效应的第一性原理研究. 物理学报, 2011, 60(4): 047103. doi: 10.7498/aps.60.047103
    [15] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [16] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [17] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [18] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  3014
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-10
  • 修回日期:  2016-09-06
  • 刊出日期:  2016-12-05

Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究

  • 1. 沈阳建筑大学理学院, 沈阳 110168;
  • 2. 南昌航空大学航空制造工程学院, 南昌 330063;
  • 3. 东北大学, 材料各向异性与织构教育部重点实验室, 沈阳 110819
  • 通信作者: 马振宁, zhenningma@126.com
    基金项目: 国家自然科学基金(批准号:51261026)资助的课题.

摘要: 采用基于密度泛函的第一性原理平面波赝势方法计算了Mg-Y-Cu合金中长周期有序相14H和18R(18R(m),18R(t))的形成焓、反应能、电子态密度和电荷密度.计算结果表明,14H和18R相都具有负的形成焓,说明两相都能够由单质转变形成,并且18R相比14H相更容易形成,但14H相具有更好的热力学稳定性;14H和18R相的态密度分布形态和变化趋势相似,它们的成键峰均主要来自于Mg的3s轨道、Mg的2p轨道,Cu的3d轨道和Y的4d轨道的贡献,且在费米能级低能级区域产生了轨道杂化效应.14H相和18R相的成键都具有明显的共价性.通过对各相(0001)面的电荷密度分析表明,14H和18R相中的Cu原子和Y原子之间都形成了共价键,并且14H相的共价性比18R相的共价性更强.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回