搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al掺杂6H-SiC的磁性研究与理论计算

黄毅华 江东亮 张辉 陈忠明 黄政仁

引用本文:
Citation:

Al掺杂6H-SiC的磁性研究与理论计算

黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁

Ferromagnetism of Al-doped 6H-SiC and theoretical calculation

Huang Yi-Hua, Jiang Dong-Liang, Zhang Hui, Chen Zhong-Ming, Huang Zheng-Ren
PDF
导出引用
  • d0铁磁性SiC被认为是自旋电子学领域的关键材料之一,受到广泛关注.本文采用氩气气氛保护的共烧掺杂方法制备具有d0铁磁性的Al掺杂6H-SiC粉体.氩气气氛能有效抑制SiC在高温下的分解,保护Al的有效掺入.所制备的粉体磁滞回线明显,矫顽力大,饱和磁矩达到0.07 emu/g.随着煅烧温度的升高,粉体从原来的抗磁性逐渐转变为铁磁性,当温度进一步升高至2200℃以上时,粉体重新表现为抗磁性.采用第一性原理计算了其磁性的来源,并分析其净自旋在正空间中的分布情况.计算表明,Al原子与空位的共同作用产生了1.0 B的局域磁矩,且其在c轴方向具有较稳定磁耦合作用.Al掺杂6H-SiC粉体的磁性主要来自于C原子的p轨道电子.
    SiC with d0 ferromagnetism is thought to be one of the most important materials in the spintronics field, and it has received widespread attention. In this paper, Al: SiC magnetic powder is fabricated by high temperature calcination method with the protection of Ar gas. X-ray diffraction results show that the obtained powder is of 6H-SiC phase, and Al is proposed to enter into the 6H-SiC crystalline. Raman results show that Ar gas plays a crucial role in impeding the SiC from decomposing at high temperature. With the protection of Ar gas, it maintains round shape after calcination about 2200℃, no any other peakis detected in the Raman spectrum. Without the protection of Ar gas, SiC particle would decompose into graphite, and the instinct peak of graphite is detected in the Raman spectrum. Energy dispersive spectrometer results show that there is 0.96 at% Al in the powder. The obtained powder shows magnificent magnetic hysteresis loop and large coercive force. Its saturation magnetic moment reaches 0.07 emu/g after calcination at 1800℃. Its coercive force reaches a maximum after calcination at 2000℃, while the saturation magnetic moment is 0.012 emu/g. With the rise of calcination temperature, the magnetism of the powder changes from diamagnetism to ferromagnetism. But when the calcination temperature rises to 2200℃ or more, it would change back to diamagnetism. The phenomenon of ferromagnetism disappearing is similar to that in ZnO as reported. The total quantity of magnetic impurities(Fe, Co, Ni) is evaluated to be less than 5 ppm. Saturation magnetic moments arising from these impurities can be calculated to be less than 10-5 emu/g according to the reported results, which is impossible to affect the accuracy in the experiment. Thus it is proposed that the ferromagnetism originates from the doping of Al in SiC powder. To understand the origin of the observed magnetism, we carry out first principles calculations based on spin polarized density functional theory. All the calculations are performed by using the generalized gradient approximation in the form of the Perdew-Burke-Ernzerhof function, which is implemented in the Viemma ab initio simulation package. A supercell consisting of 331 unit cells of 6H-SiC containing one AlSi-VSi, corresponding to a defect concentration of 0.93 at%, is built for calculations. The origin of its ferromagnetism is studied, and its spin situation in the space is mapped. The results show that the combination of Al and vacancy leads to a local magnetic moment of 1.0 B, and magnetic coupling is steady in the c axis direction. It is found that the p electron of carbon is the origin of the net spin.
      通信作者: 黄毅华, wyu@mail.sic.ac.cn
    • 基金项目: 国家自然科学基金(批准号:51572276)、国家自然科学基金委员会-广东省人民政府联合基金(第二期)超级计算科学应用研究专项和高性能陶瓷和超微结构国家重点实验室计算材料创新项目(批准号:Y12ZC4120G)资助的课题.
      Corresponding author: Huang Yi-Hua, wyu@mail.sic.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51572276), the Special Project of Supercomputing Science of Joint Fund of the National Natural Science Foundation of China and Guangdong Province, and the State Key Laboratory of High Performance Ceramics and Superfine Microstructure, China(Grant No. Y12ZC4120G).
    [1]

    Coey J 2005 Solid State Sci. 7 660

    [2]

    Coey J, Venkatesan M, Fitzgerald C 2005 Nat. Mater. 4 173

    [3]

    Coey J, Venkatesan M, Fitzgerald C, Douvalis A, Sanders I 2002 Nature 420 156

    [4]

    Venkatesan M, Fitzgerald C, Coey J 2004 Nature 430 630

    [5]

    Garcia M A, Merino J M, Pinel E F, Quesada A, de la Venta J, Gonzalez M L R 2007 Nano. Lett. 7 1489

    [6]

    Ando K 2006 Science 312 1883

    [7]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X 2011 Phys. Rev. Lett. 106 087205

    [8]

    Li L, Hua W, Prucnal S, Yao S D, Shao L, Potzger K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B:Beam Interact. Mater. Atoms 275 33

    [9]

    Wang Y T, Liu Y, Wendler E, Hubner R, Anwand W, Wang G 2015 Phys. Rev. B 92 11

    [10]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J 2009 J. Am. Chem. Soc. 131 1376

    [11]

    Cheng W, Liu G Q, Zhang F S, Zhou H Y 2012 Phys. Lett. A 376 3363

    [12]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 3

    [13]

    Zheng H W, Yan Y L, L Z C, Yang S W, Li X G, Liu J D 2013 Appl. Phys. Lett. 102 4

    [14]

    Li Q, Xu J P, Liu J D, Ye B J 2016 Mater. Res. Express 3 056103

    [15]

    Qin S, Guo X T, Cao Y Q, Ni Z H, Xu Q Y 2014 Carbon 78 559

    [16]

    Panigrahy B, Aslam M, Misra D S, Ghosh M, Bahadur D 2010 Adv. Funct. Mater. 20 1161

    [17]

    Grace P J, Venkatesan M, Alaria J, Coey J, Kopnov G, Naaman R 2009 Adv. Mater. 21 71

    [18]

    Lin X L, Pan F C 2014 J. Supercond. Nov. Magn. 27 1513

    [19]

    Wang Y T, Liu Y, Wang G, Anwand W, Jenkins C A, Arenholz E 2015 Sci. Rep. 5 8999

  • [1]

    Coey J 2005 Solid State Sci. 7 660

    [2]

    Coey J, Venkatesan M, Fitzgerald C 2005 Nat. Mater. 4 173

    [3]

    Coey J, Venkatesan M, Fitzgerald C, Douvalis A, Sanders I 2002 Nature 420 156

    [4]

    Venkatesan M, Fitzgerald C, Coey J 2004 Nature 430 630

    [5]

    Garcia M A, Merino J M, Pinel E F, Quesada A, de la Venta J, Gonzalez M L R 2007 Nano. Lett. 7 1489

    [6]

    Ando K 2006 Science 312 1883

    [7]

    Liu Y, Wang G, Wang S, Yang J, Chen L, Qin X 2011 Phys. Rev. Lett. 106 087205

    [8]

    Li L, Hua W, Prucnal S, Yao S D, Shao L, Potzger K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B:Beam Interact. Mater. Atoms 275 33

    [9]

    Wang Y T, Liu Y, Wendler E, Hubner R, Anwand W, Wang G 2015 Phys. Rev. B 92 11

    [10]

    Song B, Bao H, Li H, Lei M, Peng T, Jian J 2009 J. Am. Chem. Soc. 131 1376

    [11]

    Cheng W, Liu G Q, Zhang F S, Zhou H Y 2012 Phys. Lett. A 376 3363

    [12]

    Zheng H W, Wang Z Q, Liu X Y, Diao C L, Zhang H R, Gu Y Z 2011 Appl. Phys. Lett. 99 3

    [13]

    Zheng H W, Yan Y L, L Z C, Yang S W, Li X G, Liu J D 2013 Appl. Phys. Lett. 102 4

    [14]

    Li Q, Xu J P, Liu J D, Ye B J 2016 Mater. Res. Express 3 056103

    [15]

    Qin S, Guo X T, Cao Y Q, Ni Z H, Xu Q Y 2014 Carbon 78 559

    [16]

    Panigrahy B, Aslam M, Misra D S, Ghosh M, Bahadur D 2010 Adv. Funct. Mater. 20 1161

    [17]

    Grace P J, Venkatesan M, Alaria J, Coey J, Kopnov G, Naaman R 2009 Adv. Mater. 21 71

    [18]

    Lin X L, Pan F C 2014 J. Supercond. Nov. Magn. 27 1513

    [19]

    Wang Y T, Liu Y, Wang G, Anwand W, Jenkins C A, Arenholz E 2015 Sci. Rep. 5 8999

  • [1] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究. 物理学报, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [5] 杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门. 电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响. 物理学报, 2014, 63(20): 208501. doi: 10.7498/aps.63.208501
    [6] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [7] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化. 物理学报, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [8] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [9] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [10] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [11] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究. 物理学报, 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [13] 金华, 安立楠, 卜凡亮, 李丽华, 王蓉, 杨为佑, 张立功. SiC纳米棒的紫外发光研究. 物理学报, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [14] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [15] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究. 物理学报, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
计量
  • 文章访问数:  4793
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-19
  • 修回日期:  2016-09-29
  • 刊出日期:  2017-01-05

/

返回文章
返回