搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于双光束干涉和非线性相关的身份认证方法

何江涛 何文奇 廖美华 卢大江 彭翔

引用本文:
Citation:

一种基于双光束干涉和非线性相关的身份认证方法

何江涛, 何文奇, 廖美华, 卢大江, 彭翔

Identity authentication based on two-beam interference and nonlinear correlation

He Jiang-Tao, He Wen-Qi, Liao Mei-Hua, Lu Da-Jiang, Peng Xiang
PDF
导出引用
  • 提出了一种基于双光束干涉结构和非线性相关算法的身份认证方法.该方法在传统双光束干涉加密结构中引入基于随机二值振幅分布的相位恢复技术,将多幅图像分别编码至对应的稀疏相位分布,并通过叠加复用技术和非线性相关算法,实现了多级别的身份认证功能.其认证过程中不同级别用户所持有的相位密钥是一个稀疏相位分布,数据量更小,便于存储和传输.此外,认证时的输出图像虽然含有标准参考图像的核心信息却具有视觉上的不可分辨性,降低了信息泄露的风险.理论分析和数值仿真结果都证实了该方案的有效性和可行性.
    In this paper, a new approach to identity authentication is proposed, which takes advantage of the two-beam interference setup and the nonlinear correlation technique. According to the traditional two-beam interference encryption/decryption structure, we design a modified iterative phase retrieval algorithm (MIPRA), which takes the random binary amplitudes as the constraints at the input plane to encode different images (standard reference images) into a set of sparse phase distributions. In the MIPRA, a given random phase distribution serves as a system lock, and it is placed at one of the arms of the two-beam interference setup and keeps unchanged in the whole iterative phase retrieval algorithm but equivalently provides a fixed shifting vector toward the output complex amplitude field. While the peak-to-correlation value (between the output intensity and the original image) reaches a presetting threshold value, or the iterative numer of time reaches a presetting maximum value, the MIPRA stops. Here, the phase lock is assumed to be the same for all the users and thus it is placed and fixed in the system, while the calculated phase distributions vary from the MIPRA to different binary constraints, which are related to different users. Meanwhile, we also study an extension version of the proposed method. By using a superposition multiplexing technique and a nonlinear correlation technique, we can realize a function of hierarchical authentication for various kinds of users through a similar but more smart decision strategy. For example, we adopt the MIPRA four times with different constraints (random binary amplitude distribution) to obtain four phase distributions, the sum of them will be regarded as a final phase key and is designed to the user with the highest privilege. He is then able to pass all the authentication process for each standard reference image with his multiplexed phase key, that is to say, there are obvious peaks in all the nonlinear correlation maps between all the output images and the corresponding standard reference images. In a similar way, the user with the lowest privilege can only pass one authentication process. Compared with the previous identity authentication methods in the optical security area, the phase key for each user, no matter what level he belongs to, is easy to be stored and transmitted because its distinguishing feature of sparsity. It is worthwhile to note that the cross-talk between different output images are very low and will has no effect on the authentication decision since we deliberately assemble all the binary distributions, which act as constraints at the input plane in the MIPRA. Moreover, the output results are all noise-like distributions, which makes it nearly impossible for any potential intruders to find any clues of the original standard reference images. However, on the other hand, with the nonlinear correlation technique, we can easily extract enough information from these noise-like output results to authorize any users, usually we can obtain an obvious peak at the center of the correlation results but there is no peak if we adopt the traditional correlation algorithms. This feature helps reduce the risk of information leakage, thereby providing an additional protection layer. Also, weinvestigate the robustness properties by taking the sparsity ratio, Gaussian noise, and shear/occluded attack into consideration. Some previous tests alsoindicated that our scheme can resist the attack employing incorrect random phase keys. Theoretical analysis and a series simulation results are provided to verify the feasibility and effectiveness of the proposed scheme.
      通信作者: 何文奇, he.wenqi@qq.com;xpeng@szu.edu.cn ; 彭翔, he.wenqi@qq.com;xpeng@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377017,61307003);中德合作项目(批准号:GZ 760);深圳大学自然科学基金(批准号:2016028)和深圳市科技计划项目(批准号:JCYJ20160520164642478)资助的课题.
      Corresponding author: He Wen-Qi, he.wenqi@qq.com;xpeng@szu.edu.cn ; Peng Xiang, he.wenqi@qq.com;xpeng@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.61377017,61307003),the Sino-German Center for Research Promotion (Grant No.GZ 760),the Natural Science Foundation of Shenzhen University,China (Grant No.2016028),and the Science and Technology Innovation Commission of Shenzhen,China (Grant No.JCYJ20160520164642478).
    [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [2]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [3]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Acta Phys. Sin. 55 1130 (in Chinese)[彭翔, 张鹏, 位恒政, 于斌 2006 物理学报 55 1130]

    [4]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [5]

    Qin W, Peng X 2010 Opt. Lett. 35 118

    [6]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443

    [7]

    Clemente P, Duran V, Torres-Company V, Tajahuerce E, Lancis J 2010 Opt. Lett. 35 2391

    [8]

    Pérez-Cabré E, Cho M, Javidi B 2011 Opt. Lett. 36 22

    [9]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425

    [10]

    Zhou N R, Zhang A D, Zheng F, Gong L H 2014 Opt. Laser Technol. 62 152

    [11]

    Zhang Y, Wang B, Dong Z L 2009 J. Opt. A:Pure Appl. Opt. 11 125406

    [12]

    Kumar P, Joseph J, Singh K 2011 Appl. Opt. 50 1805

    [13]

    Niu C H, Wang X L, Lü N G, Zhou Z H, Li X Y 2010 Opt. Express 18 7827

    [14]

    Wang X G, Zhao D M 2012 Appl. Opt. 51 686

    [15]

    Javidi B, Horner J L 1994 Opt. Eng. 33 1752

    [16]

    Wang R K, Watson I A, Chatwin C 1996 Opt. Eng. 35 2464

    [17]

    He W Q, Peng X, Meng X F, Liu X L 2013 Acta. Phys. Sin. 62 064205 (in Chinese)[何文奇, 彭翔, 孟祥锋, 刘晓利 2013 物理学报 62 064205]

    [18]

    Liu W, Liu Z J, Liu S T 2015 Appl. Opt. 54 1802

    [19]

    Shi X Y, Chen Z Y, Zhao D M, Mao H D, Chen L F 2015 Appl. Opt. 54 3197

    [20]

    Chen W, Chen X D, Stern A, Javidi B 2013 IEEE Photon. J. 5 6900113

    [21]

    Gong Q, Liu X Y, Li G Q, Qin Y 2013 Appl. Opt. 52 7486

    [22]

    Chen W, Chen X D 2014 Opt. Commun. 318 128

    [23]

    Wang X G, Chen W, Chen X D 2015 IEEE Photon. J. 7 7800310

    [24]

    Pan X M, Meng X F, Yang X L, Wang Y R, Peng X, He W Q, Dong G Y, Chen H Y 2015 Acta. Phys. Sin. 64 110701 (in Chinese)[潘雪梅, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇, 董国艳, 陈红艺 2015 物理学报 64 110701]

    [25]

    Wang X G, Chen W, Mei S T, Chen X D 2015 Sci. Rep. 5 15668

    [26]

    Wang Q, Alfalou A, Brosseau C 2016 Opt. Commun. 372 144

    [27]

    Javidi B 1989 Appl. Opt. 28 2358

  • [1]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767

    [2]

    Situ G H, Zhang J J 2004 Opt. Lett. 29 1584

    [3]

    Peng X, Zhang P, Wei H Z, Yu B 2006 Acta Phys. Sin. 55 1130 (in Chinese)[彭翔, 张鹏, 位恒政, 于斌 2006 物理学报 55 1130]

    [4]

    Liu Z J, Guo Q, Xu L, Ahmad M A, Liu S T 2010 Opt. Express 18 12033

    [5]

    Qin W, Peng X 2010 Opt. Lett. 35 118

    [6]

    Zhang Y, Wang B 2008 Opt. Lett. 33 2443

    [7]

    Clemente P, Duran V, Torres-Company V, Tajahuerce E, Lancis J 2010 Opt. Lett. 35 2391

    [8]

    Pérez-Cabré E, Cho M, Javidi B 2011 Opt. Lett. 36 22

    [9]

    Shi Y S, Li T, Wang Y L, Gao Q K, Zhang S G, Li H F 2013 Opt. Lett. 38 1425

    [10]

    Zhou N R, Zhang A D, Zheng F, Gong L H 2014 Opt. Laser Technol. 62 152

    [11]

    Zhang Y, Wang B, Dong Z L 2009 J. Opt. A:Pure Appl. Opt. 11 125406

    [12]

    Kumar P, Joseph J, Singh K 2011 Appl. Opt. 50 1805

    [13]

    Niu C H, Wang X L, Lü N G, Zhou Z H, Li X Y 2010 Opt. Express 18 7827

    [14]

    Wang X G, Zhao D M 2012 Appl. Opt. 51 686

    [15]

    Javidi B, Horner J L 1994 Opt. Eng. 33 1752

    [16]

    Wang R K, Watson I A, Chatwin C 1996 Opt. Eng. 35 2464

    [17]

    He W Q, Peng X, Meng X F, Liu X L 2013 Acta. Phys. Sin. 62 064205 (in Chinese)[何文奇, 彭翔, 孟祥锋, 刘晓利 2013 物理学报 62 064205]

    [18]

    Liu W, Liu Z J, Liu S T 2015 Appl. Opt. 54 1802

    [19]

    Shi X Y, Chen Z Y, Zhao D M, Mao H D, Chen L F 2015 Appl. Opt. 54 3197

    [20]

    Chen W, Chen X D, Stern A, Javidi B 2013 IEEE Photon. J. 5 6900113

    [21]

    Gong Q, Liu X Y, Li G Q, Qin Y 2013 Appl. Opt. 52 7486

    [22]

    Chen W, Chen X D 2014 Opt. Commun. 318 128

    [23]

    Wang X G, Chen W, Chen X D 2015 IEEE Photon. J. 7 7800310

    [24]

    Pan X M, Meng X F, Yang X L, Wang Y R, Peng X, He W Q, Dong G Y, Chen H Y 2015 Acta. Phys. Sin. 64 110701 (in Chinese)[潘雪梅, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇, 董国艳, 陈红艺 2015 物理学报 64 110701]

    [25]

    Wang X G, Chen W, Mei S T, Chen X D 2015 Sci. Rep. 5 15668

    [26]

    Wang Q, Alfalou A, Brosseau C 2016 Opt. Commun. 372 144

    [27]

    Javidi B 1989 Appl. Opt. 28 2358

  • [1] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案. 物理学报, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [2] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [3] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [4] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [5] 何文奇, 陈嘉誉, 张莲彬, 卢大江, 廖美华, 彭翔. 一种基于多重散射的光学Hash函数. 物理学报, 2021, 70(5): 054203. doi: 10.7498/aps.70.20201492
    [6] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [8] 孙腾飞, 卢鹏, 卓壮, 张文浩, 卢景琦. 基于单一分光棱镜干涉仪的双通路定量相位显微术. 物理学报, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [9] 潘雪梅, 孟祥锋, 杨修伦, 王玉荣, 彭翔, 何文奇, 董国艳, 陈红艺. 基于复振幅场信息复用和RSA算法的非对称多幅图像认证方法. 物理学报, 2015, 64(11): 110701. doi: 10.7498/aps.64.110701
    [10] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案. 物理学报, 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [11] 吴贵铜, 周南润, 龚黎华, 刘三秋. 集体噪声信道上带身份认证的无信息泄露的量子对话协议. 物理学报, 2014, 63(6): 060302. doi: 10.7498/aps.63.060302
    [12] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [13] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [14] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [15] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [16] 史祎诗, 王雅丽, 肖俊, 杨玉花, 张静娟. 基于位相抽取的三维信息加密算法研究. 物理学报, 2011, 60(3): 034202. doi: 10.7498/aps.60.034202
    [17] 彭 翔, 汤红乔, 田劲东. 双随机相位编码光学加密系统的唯密文攻击. 物理学报, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [18] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [19] 彭 翔, 张 鹏, 位恒政, 于 斌. 双随机相位加密系统的已知明文攻击. 物理学报, 2006, 55(3): 1130-1136. doi: 10.7498/aps.55.1130
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  3661
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 修回日期:  2016-11-28
  • 刊出日期:  2017-02-05

一种基于双光束干涉和非线性相关的身份认证方法

    基金项目: 国家自然科学基金(批准号:61377017,61307003);中德合作项目(批准号:GZ 760);深圳大学自然科学基金(批准号:2016028)和深圳市科技计划项目(批准号:JCYJ20160520164642478)资助的课题.

摘要: 提出了一种基于双光束干涉结构和非线性相关算法的身份认证方法.该方法在传统双光束干涉加密结构中引入基于随机二值振幅分布的相位恢复技术,将多幅图像分别编码至对应的稀疏相位分布,并通过叠加复用技术和非线性相关算法,实现了多级别的身份认证功能.其认证过程中不同级别用户所持有的相位密钥是一个稀疏相位分布,数据量更小,便于存储和传输.此外,认证时的输出图像虽然含有标准参考图像的核心信息却具有视觉上的不可分辨性,降低了信息泄露的风险.理论分析和数值仿真结果都证实了该方案的有效性和可行性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回