搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近距离激光外差探测光学极限位移分辨率

晏春回 王挺峰 张合勇 吕韬 吴世松

引用本文:
Citation:

近距离激光外差探测光学极限位移分辨率

晏春回, 王挺峰, 张合勇, 吕韬, 吴世松

Short-range optical limited displacement resolution in laser heterodyne detection system

Yan Chun-Hui, Wang Ting-Feng, Zhang He-Yong, Lü Tao, Wu Shi-Song
PDF
导出引用
  • 通过统计理论和维纳-辛钦定理推导出激光外差探测系统光电流的功率谱函数,分析了光电流谱线分布与激光光源线宽、中频信号频率以及信号光相对本振光传输延迟时间的关系,修正了相关文献中光电流功率谱的理论公式.根据信号与噪声理论建立了激光线宽引起的相位噪声的一维概率分布模型,并据此得到了基于激光波长、探测距离以及激光线宽的极限位移分辨率的数学模型.对光电流的功率谱和外差光学极限位移分辨率进行了相关的数值仿真,结果表明延迟时间与相干时间的关系决定光电流谱线分布的情况.当激光波长为532 nm,激光线宽在1 kHz,探测距离为100 m时,光学极限位移分辨率为0.266 nm,相关文献中的实验数据与理论推导结果相符合.
    Photocurrent power spectral density function of laser heterodyne detection is obtained by the statistical theory and Wiener-Khinchin theorem. For a short-range distance heterodyne system without considering atmospheric turbulence, we observe the relations between the photocurrent spectral line distribution and the laser linewidth, the intermediate-frequency signal, and the propagation delay time of signal light relative to local oscillator light. Theoretical formula of photocurrent power spectrum in relevant papers is revised to eliminate the effect of laser linewidth. Onedimensional probability distribution model of phase noise caused by laser linewidth is built based on the signal and noise theory. Accordingly we establish a mathematical model of limit detection accuracy based on laser wavelength, detection distance, and laser linewidth, which indicates the minimum detectable amplitude of heterodyne system. According to the numerical results, we find that the distribution of photocurrent spectral line intensities is greatly dependent on the relation between delay time and coherent time. And the minimum resolvable displacement increases with the detection distance and laser linewidth increasing. When the optical limited displacement resolution is 0.266 nm with a laser wavelength of 532 nm, a laser linewidth is 1 kHz, and a detection distance is 100 m. Experimental data in relevant papers agree well with the theoretical derivations. Our findings show that the research of displacement resolution might provide a quantitative reference for the theoretical research and engineering application of short-range heterodyne resolution.
      通信作者: 王挺峰, tingfeng_w@sina.com
    • 基金项目: 中国科学院前沿科学重点研究计划(批准号:QYZDB-SSW-SLH014)和国家自然基金青年科学基金(批准号:61205143)资助的\text{课题.}
      Corresponding author: Wang Ting-Feng, tingfeng_w@sina.com
    • Funds: Project supported by the Key Research Program of Frontier Science, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SLH014) and the Yong Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205143).
    [1]

    Kingston R 1977 Opt. News 3 27

    [2]

    Swanson E A, Carter G M 1989 Appl. Opt. 28 3918

    [3]

    Mosley D E, Matson C L, Czyzak S R 1998 Aerospace Defense Sensing and Controls 3380 243

    [4]

    Nan J D, Pi M J, Fan L M 1989 Acta Opt. Sin. 10 714 (in Chinese)[南京达, 皮名嘉, 樊立明, 李洪滨 1989 光学学报 10 714]

    [5]

    Pu L L, Zhou Y, Sun J F, Shen B L, Lu W (in Chinese)[濮莉莉, 周煜, 孙剑锋, 沈宝良, 鲁伟 2011 光学学报 31 260]

    [6]

    Shintaro H, Yuki K, Ryosuke N, Norio H, Tadao N 2015 Opt. Express 23 26689

    [7]

    Luo Y, Feng G Y, Liu J, Zhou C Y, Zhou S H (in Chinese)[罗韵, 冯国英, 刘建, 周晟阳, 周寿桓 2014 中国激光 41 1108001]

    [8]

    Luo H J, Yuan X H (in Chinese)[罗韩君, 元秀华 2013 中国激光 40 173]

    [9]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese)[李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [10]

    Shang J H, Zhao S G, He Y, Chen W B, Jia N 2011 Chin. Opt. Lett. 9 081201

    [11]

    An Y Y, Liu J F, Li Q H 2007 Optoelectronic Technology (2nd Ed.) (Beijing:Publishing House of Electronics Inducstry) p167 (in Chinese)[安毓英, 刘继芳, 李庆辉 2007 光电子技术 (第二版) (北京:电子工业出版社) 第167页]

    [12]

    Wang Y D, Wang J 2011 Fundamentals of Random Signal Analysis (3rd Ed.) (Beijing:Publishing House of Electronics Inducstry) (in Chinese)[王永德, 王军 2011 随机信号分析基础 (第三版) (北京:电子工业出版社)]

    [13]

    Rowe H E 1965 Signal and Noise in Communication Systems (Princeton, NJ:van Nostrand)

    [14]

    Gallion P B, Debarge G 1984 IEEE J. Quantum Electron. 20 343

    [15]

    Yves P, Michel P, Michel M, Michel T 2009 Opt. Express 17 3659

    [16]

    Siegman A E, Benedetto D, Manes K R 1967 IEEE J. Quantum Electron. 3 180

    [17]

    Wolfgang Osten 2007 Optical Inspection of Microsystems (1st Ed.) (New York:CRC Press) p246

    [18]

    Dandridge A, Tveten A B 1982 Opt. Lett. 7 279

  • [1]

    Kingston R 1977 Opt. News 3 27

    [2]

    Swanson E A, Carter G M 1989 Appl. Opt. 28 3918

    [3]

    Mosley D E, Matson C L, Czyzak S R 1998 Aerospace Defense Sensing and Controls 3380 243

    [4]

    Nan J D, Pi M J, Fan L M 1989 Acta Opt. Sin. 10 714 (in Chinese)[南京达, 皮名嘉, 樊立明, 李洪滨 1989 光学学报 10 714]

    [5]

    Pu L L, Zhou Y, Sun J F, Shen B L, Lu W (in Chinese)[濮莉莉, 周煜, 孙剑锋, 沈宝良, 鲁伟 2011 光学学报 31 260]

    [6]

    Shintaro H, Yuki K, Ryosuke N, Norio H, Tadao N 2015 Opt. Express 23 26689

    [7]

    Luo Y, Feng G Y, Liu J, Zhou C Y, Zhou S H (in Chinese)[罗韵, 冯国英, 刘建, 周晟阳, 周寿桓 2014 中国激光 41 1108001]

    [8]

    Luo H J, Yuan X H (in Chinese)[罗韩君, 元秀华 2013 中国激光 40 173]

    [9]

    Li C Q, Wang T F, Zhang H Y, Xie J J, Liu L S, Guo J 2016 Acta Phys. Sin. 65 084206 (in Chinese)[李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲 2016 物理学报 65 084206]

    [10]

    Shang J H, Zhao S G, He Y, Chen W B, Jia N 2011 Chin. Opt. Lett. 9 081201

    [11]

    An Y Y, Liu J F, Li Q H 2007 Optoelectronic Technology (2nd Ed.) (Beijing:Publishing House of Electronics Inducstry) p167 (in Chinese)[安毓英, 刘继芳, 李庆辉 2007 光电子技术 (第二版) (北京:电子工业出版社) 第167页]

    [12]

    Wang Y D, Wang J 2011 Fundamentals of Random Signal Analysis (3rd Ed.) (Beijing:Publishing House of Electronics Inducstry) (in Chinese)[王永德, 王军 2011 随机信号分析基础 (第三版) (北京:电子工业出版社)]

    [13]

    Rowe H E 1965 Signal and Noise in Communication Systems (Princeton, NJ:van Nostrand)

    [14]

    Gallion P B, Debarge G 1984 IEEE J. Quantum Electron. 20 343

    [15]

    Yves P, Michel P, Michel M, Michel T 2009 Opt. Express 17 3659

    [16]

    Siegman A E, Benedetto D, Manes K R 1967 IEEE J. Quantum Electron. 3 180

    [17]

    Wolfgang Osten 2007 Optical Inspection of Microsystems (1st Ed.) (New York:CRC Press) p246

    [18]

    Dandridge A, Tveten A B 1982 Opt. Lett. 7 279

  • [1] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, 2021, 70(5): 054205. doi: 10.7498/aps.70.20201302
    [2] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距. 物理学报, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [5] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响. 物理学报, 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [6] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [7] 舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔. 神光II装置上速度干涉仪的研制及应用. 物理学报, 2012, 61(11): 114102. doi: 10.7498/aps.61.114102
    [8] 孙兵兵, 吴博, 王辉, 黄志祥, 吴先良. 基于四能级原子系统模型增益媒质激光原理研究. 物理学报, 2012, 61(22): 220206. doi: 10.7498/aps.61.220206
    [9] 于文英, 安里千. 锥柱复合目标激光距离多普勒像分析模型. 物理学报, 2012, 61(21): 218703. doi: 10.7498/aps.61.218703
    [10] 张永康, 于水生, 姚红兵, 王飞, 任爱国, 裴旭. 强脉冲激光在AZ31B镁合金中诱导冲击波的实验研究. 物理学报, 2010, 59(8): 5602-5605. doi: 10.7498/aps.59.5602
    [11] 张红鹰, 吴师岗. 飞秒激光作用下薄膜破坏的力学过程. 物理学报, 2007, 56(9): 5314-5317. doi: 10.7498/aps.56.5314
    [12] 莫嘉琪, 张伟江, 何 铭. 激光脉冲放大器传输波的计算. 物理学报, 2006, 55(7): 3233-3236. doi: 10.7498/aps.55.3233
    [13] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [14] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [15] 陈岁元, 刘常升, 李慧莉, 崔 彤. 非晶Fe73.5Cu1Nb3Si13.5B9合金激光纳米化的超精细结构研究. 物理学报, 2005, 54(9): 4157-4163. doi: 10.7498/aps.54.4157
    [16] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离. 物理学报, 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [17] 卞保民, 陈 笑, 夏 铭, 杨 玲, 沈中华. 液体中激光等离子体冲击波波前传播特性研究及测试. 物理学报, 2004, 53(2): 508-513. doi: 10.7498/aps.53.508
    [18] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [19] 李 昆, 张 杰, 余 玮. 激光与固体靶作用产生高次谐波的振荡镜面模型. 物理学报, 2003, 52(6): 1412-1417. doi: 10.7498/aps.52.1412
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  4505
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-08-08
  • 刊出日期:  2017-12-05

/

返回文章
返回