搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理

邢伟 孙金锋 施德恒 朱遵略

引用本文:
Citation:

icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理

邢伟, 孙金锋, 施德恒, 朱遵略

icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation

Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe
PDF
导出引用
  • 采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法,结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z,计算了BF+离子前两个离解极限B+(1Sg)+F(2Pu)和B+(3Pu)+F(2Pu)对应的14个Λ-S态(X2Σ+,12Π,22Π,22Σ+,14Σ+,14Δ,14Σ1,12Δ,12Σ1,32Σ+,14Π,24Π,24Σ+和32Π)和30个Ω态的势能曲线.在势能曲线的计算中,考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限.基于得到的势能曲线,获得了束缚和准束缚的12个Λ-S态和28个Ω态的光谱常数,并且X2Σ+态的光谱常数与已有的实验结果符合.此外,计算了BF分子X1Σ+态到BF+离子X2Σ+,12Π和22Σ+态的垂直电离势和绝热电离势,并且BF+(X2Σ+)←BF(X1Σ+)的垂直电离势和绝热电离势与相应的实验结果非常符合.由X2Σ+,22Π,14Σ+,32Σ+和32Π态和其他的激发Λ-S态势能曲线的交叉现象,借助于计算的旋轨耦合矩阵元,首次分析了X2Σ+和32Π态的预解离机理以及22Π(υ'≥9),14Σ+(υ'≥4)和32Σ+(υ'≥4)的振动能级受到其他电子态的微扰.计算了30个Ω态离解极限处的相对能量,并且与实验结果十分符合.最后计算了22Π(υ'=0–9)–X2Σ+,22Σ+(υ'=0–2)–X2Σ+,(3)1/2–(1)1/2势阱一和(2)3/2(υ'=0–9)–(1)1/2势阱一跃迁的Franck-Condon因子、爱因斯坦自发辐射系数和辐射寿命.
    In this paper, we study the spectroscopic properties and predissociation mechanisms of 14 states, which come from the first two dissociation channels of the BF+ cation. The potential energy curves of 14 Λ-S (X2Σ+, 12Π, 22Π, 22Σ+, 14Σ+, 14Δ, 14Σ1, 12Δ, 12Σ1, 32Σ+, 14Π, 24Π, 24Σ+, and 32Π) and corresponding 30 Ω states are calculated using the complete active space self-consistent field method, which is followed by the valence internally contracted multireference configuration interaction approach with the Davidson modification. To improve the reliability and accuracy of the potential energy curves, the core-valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energy to the complete basis set limit are taken into account. The spin-orbit coupling is computed using the state interaction approach with the Breit-Pauli Hamiltonian. Based on these potential energy curves, the spectroscopic parameters and vibrational levels are determined for all the bound and quasi-bound Λ-S and Ω states. The present ground-state spectroscopic constants match well with the available experimental data. In addition, the vertical and adiabatic ionization potentials from the X1Σ+ state of BF molecule to the X2Σ+, 12Π, and 22Σ+ states of BF+ cation are calculated. The results of BF+(X2Σ+) ← BF(X1Σ+) ionization are in good agreement with the measurements. Various curve crossings of Λ-S states are revealed. We calculate the spin-orbit matrix elements between two interacting electronic states in the curve crossing region. With the help of present spin-orbit coupling matrix elements, we analyze the predissociation mechanisms of X2Σ+ and 32Π states along with the perturbations of the nearby states to 22Π, 14Σ+ and 32Σ+ states for the first time. The predissociation of X2Σ+ and 32Π states have a chance to occur around the vibrational levels υ"=30 and υ'=0 due to spin-orbit coupling, respectively. The present results also indicate that the υ' ≥ 9 vibrational levels of 22Π state are perturbed by the crossing states 22Σ+, 14Σ+, 14Δ, 14Σ1, 12Δ, 12Σ1, 32Σ+, and 14Π, that the υ' ≥ 4 vibrational levels of 14Σ+ state are perturbed via the interacting states 14Σ1 and 12Σ1, and the great perturbations between υ' ≥ 4 vibrational levels of 32Σ+ state and υ' ≥ 0 vibrational levels of 14Π state. For the 30 Ω state, we also calculate the relative energies of dissociation limits compared with the lowest one matching well with the experimental ones. Finally, the Franck-Condon factors, Einstein coefficients, and radiative lifetimes are evaluated for the 22Π (υ'=0-9)-X2Σ+, 22Σ+ (υ'=0-2)-X2Σ+, (3)1/2-(1)1/21st well, and (2)3/2 (υ'=0-9)-(1)1/21st well transitions.
      通信作者: 孙金锋, jfsun@haust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61275132,11274097)资助的课题.
      Corresponding author: Sun Jin-Feng, jfsun@haust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275132, 11274097).
    [1]

    Chakrabarti K, Tennyson J 2009 J. Phys. B:At. Mol. Opt. Phys. 42 105204

    [2]

    Hildenbrand D L 1971 Int. J. Mass Spectrom. Ion Phys. 7 255

    [3]

    Robinson D W 1963 J. Mol. Spectrosc. 11 275

    [4]

    Caton R B, Douglas A E 1970 Can. J. Phys. 48 432

    [5]

    Dyke J M, Kirby C, Morris A 1983 J. Chem. Soc., Faraday Trans. 2 79 483

    [6]

    Winifred M H 1965 J. Chem. Phys. 43 624

    [7]

    Nesbet R K 1965 J. Chem. Phys. 43 4403

    [8]

    Cade P E, Huo W M 1975 At. Data Nucl. Data Tables 15 1

    [9]

    Rosmus P, Werner H J, Grimm M 1982 Chem. Phys. Lett. 92 250

    [10]

    Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313

    [11]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 105 3328

    [12]

    Magoulas I, Kalemos A, Mavridis A 2013 J. Chem. Phys. 138 104312

    [13]

    Niu X H, Shu H B, Zhu Z L, Chen Q 2016 Spectrochim. Acta A 159 60

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [15]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [16]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L, L S X 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略, 吕淑霞 2015 物理学报 64 153101]

    [17]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [18]

    Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G, Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese) [赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰 2017 物理学报 66 063103]

    [19]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [20]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [21]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [22]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [23]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [24]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [25]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [26]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [27]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

    [28]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [29]

    Lidén K 1949 Ark. Fys. 1 229

    [30]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489

    [31]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC:National Bureau of Standard) p60

    [32]

    Okabe H (translated by Tang G Q, Bai Y B, Lu Z G) 1982 Photochemistry of Small Molecules (Changchun:Jilin People's Press) p40 (in Chinese) [冈田秀雄著(汤国庆, 白玉白, 陆志刚译) 1982 小分子光化学(长春:吉林人民出版社)第40页]

  • [1]

    Chakrabarti K, Tennyson J 2009 J. Phys. B:At. Mol. Opt. Phys. 42 105204

    [2]

    Hildenbrand D L 1971 Int. J. Mass Spectrom. Ion Phys. 7 255

    [3]

    Robinson D W 1963 J. Mol. Spectrosc. 11 275

    [4]

    Caton R B, Douglas A E 1970 Can. J. Phys. 48 432

    [5]

    Dyke J M, Kirby C, Morris A 1983 J. Chem. Soc., Faraday Trans. 2 79 483

    [6]

    Winifred M H 1965 J. Chem. Phys. 43 624

    [7]

    Nesbet R K 1965 J. Chem. Phys. 43 4403

    [8]

    Cade P E, Huo W M 1975 At. Data Nucl. Data Tables 15 1

    [9]

    Rosmus P, Werner H J, Grimm M 1982 Chem. Phys. Lett. 92 250

    [10]

    Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313

    [11]

    Bruna P J, Grein F 2001 J. Phys. Chem. A 105 3328

    [12]

    Magoulas I, Kalemos A, Mavridis A 2013 J. Chem. Phys. 138 104312

    [13]

    Niu X H, Shu H B, Zhu Z L, Chen Q 2016 Spectrochim. Acta A 159 60

    [14]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [15]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [16]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L, L S X 2015 Acta Phys. Sin. 64 153101 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略, 吕淑霞 2015 物理学报 64 153101]

    [17]

    Liu X J, Miao F J, Li R, Zhang C H, Li Q N, Yan B 2015 Acta Phys. Sin. 64 123101 (in Chinese) [刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰 2015 物理学报 64 123101]

    [18]

    Zhao S T, Liang G Y, Li R, Li Q N, Zhang Z G, Yan B 2017 Acta Phys. Sin. 66 063103 (in Chinese) [赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰 2017 物理学报 66 063103]

    [19]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [20]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [21]

    Wilson A K, van Mourik T, Dunning T H 1996 J. Mol. Struct. (Theochem) 388 339

    [22]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [23]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [24]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [25]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [26]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317

    [27]

    Le Roy R J 2007 LEVEL 8.0:A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo:University of Waterloo Chemical Physics Research Report) CP-663

    [28]

    Kramida A E, Ryabtsev A N 2007 Phys. Scr. 76 544

    [29]

    Lidén K 1949 Ark. Fys. 1 229

    [30]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489

    [31]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) (Washington, DC:National Bureau of Standard) p60

    [32]

    Okabe H (translated by Tang G Q, Bai Y B, Lu Z G) 1982 Photochemistry of Small Molecules (Changchun:Jilin People's Press) p40 (in Chinese) [冈田秀雄著(汤国庆, 白玉白, 陆志刚译) 1982 小分子光化学(长春:吉林人民出版社)第40页]

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [3] 周锐, 李传亮, 和小虎, 邱选兵, 孟慧艳, 李亚超, 赖云忠, 魏计林, 邓伦华. 基于ab initio计算的CF-离子低激发态光谱性质研究. 物理学报, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [4] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 物理学报, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略, 吕淑霞. 一氟化碳电子态的光谱性质和预解离机理的理论研究. 物理学报, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [8] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [13] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [14] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数. 物理学报, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [15] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [16] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [17] 马 靖, 丁 蕾, 顾学军, 郑海洋, 方 黎, 张为俊, 黄超群, 卫立夏, 杨 斌, 齐 飞. 四氯乙烯的同步辐射光电离研究. 物理学报, 2006, 55(1): 137-141. doi: 10.7498/aps.55.137
    [18] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [19] 毛华平, 杨兰蓉, 王红艳, 朱正和, 唐永建. 钇小团簇的结构和电离势的计算. 物理学报, 2005, 54(11): 5126-5129. doi: 10.7498/aps.54.5126
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  2694
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-25
  • 修回日期:  2018-01-03
  • 刊出日期:  2019-03-20

icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理

  • 1. 河南科技大学材料科学与工程学院, 洛阳 471023;
  • 2. 信阳师范学院物理电子工程学院, 信阳 464000;
  • 3. 河南师范大学物理与材料科学学院, 新乡 453007
  • 通信作者: 孙金锋, jfsun@haust.edu.cn
    基金项目: 国家自然科学基金(批准号:61275132,11274097)资助的课题.

摘要: 采用考虑Davidson修正的内收缩多参考组态相互作用(icMRCI+Q)方法,结合相关一致基组aug-cc-pV5Z和aug-cc-pV6Z,计算了BF+离子前两个离解极限B+(1Sg)+F(2Pu)和B+(3Pu)+F(2Pu)对应的14个Λ-S态(X2Σ+,12Π,22Π,22Σ+,14Σ+,14Δ,14Σ1,12Δ,12Σ1,32Σ+,14Π,24Π,24Σ+和32Π)和30个Ω态的势能曲线.在势能曲线的计算中,考虑了旋轨耦合效应、核价相关和标量相对论修正以及将参考能和相关能分别外推至完全基组极限.基于得到的势能曲线,获得了束缚和准束缚的12个Λ-S态和28个Ω态的光谱常数,并且X2Σ+态的光谱常数与已有的实验结果符合.此外,计算了BF分子X1Σ+态到BF+离子X2Σ+,12Π和22Σ+态的垂直电离势和绝热电离势,并且BF+(X2Σ+)←BF(X1Σ+)的垂直电离势和绝热电离势与相应的实验结果非常符合.由X2Σ+,22Π,14Σ+,32Σ+和32Π态和其他的激发Λ-S态势能曲线的交叉现象,借助于计算的旋轨耦合矩阵元,首次分析了X2Σ+和32Π态的预解离机理以及22Π(υ'≥9),14Σ+(υ'≥4)和32Σ+(υ'≥4)的振动能级受到其他电子态的微扰.计算了30个Ω态离解极限处的相对能量,并且与实验结果十分符合.最后计算了22Π(υ'=0–9)–X2Σ+,22Σ+(υ'=0–2)–X2Σ+,(3)1/2–(1)1/2势阱一和(2)3/2(υ'=0–9)–(1)1/2势阱一跃迁的Franck-Condon因子、爱因斯坦自发辐射系数和辐射寿命.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回