搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法

李芳 王明清 郑明 卢苇 于庆南 贾燕 吴坚

引用本文:
Citation:

一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法

李芳, 王明清, 郑明, 卢苇, 于庆南, 贾燕, 吴坚

Numerical reference plane algorithm for effectively solving tilt distortion of a phase image in digital off-axis holography

Li Fang, Wang Ming-Qing, Zheng Ming, Lu Wei, Yu Qing-Nan, Jia Yan, Wu Jian
PDF
导出引用
  • 离轴数字全息中使用倾斜的平面参考波以消除成像中的零级衍射和共轭像是一种简捷和常用的方法,然而该方法遇到的一个困扰是,由于倾斜参考波引入了附加的载波频率并很难通过实验测量准确地获得附加的载波频率值或倾角,因此会导致重建的相图出现一定的倾斜畸变而无法完全修正.本文提出了一种数字参考平面算法以解决这一问题.该算法利用重建相图的平坦区域选点构建一个能准确表征相图倾斜的数字参考平面,并建立该平面参量与参考波载波频率的数学关系和作为随后相图畸变修正迭代计算的判据.该算法简单有效,不仅能实现对倾斜相位畸变的准确修正,而且能准确地获得倾斜平面参考波的附加载波频率.由于在相位解包裹重建中结合了抑噪处理,因此该方法在环境和系统噪声的影响下仍然有效,实验结果验证了理论设计的有效性.
    It is a simple and commonly-used approach to use an inclined plane reference wave to remove zero-order diffraction and conjugated image in digital off-axis holography. However, this method is encountering a difficulty, since an additional carrier frequency is incorporated into the inclined reference wave and it is difficult to accurately obtain this additional carrier frequency via experimental measurement, a certain tilt distortion of the phase image will occur in the hologram reconstruction. In this paper, a numerical reference plane algorithm is proposed to solve this problem. This method innovatively constructs a numerical reference plane which is able to exactly characterize the tilt of the phase image by choosing three different points from a local flat of the reconstructed image, and establishes a mathematical relation between the plane parameters and the carrier frequency of the reference wave, which is used as a criterion of correcting the tilt distortion of the phase image in the subsequent iterative computation. The procedures of the algorithm are as follows. 1) Input the nominal carrier frequencies, (fx', fy') of the plane reference wave and reconstruct the hologram. 2) Unwrap the phase with PUMA algorithm and suppress the noise using bilateral filtering and short time Fourier transform with wavelet shrinkage. 3) Construct the numerical reference plane reflecting the image inclination and establish the mathematical relation between the plane parameters and the carrier frequencies of the reference wave. 4) Perform the iterative computation to correct the nominal carrier frequencies, (fx', fy') by using the differential coefficients, (a, b) of the reference plane equation as the criterion. 5) Output the computation result and the corrected phase image. The algorithm is simple and effective. It is able not only to achieve accurate correction to the tilt phase distortion, but also to exactly obtain the additional carrier frequency of the inclined plane reference wave. Since in the phase unwrapping reconstruction, the proposed approach combines with bi-lateral filtering processing, wavelet shrinking and short time Fourier transform to remove the noise influence while the image details are preserved, the method would still be valid under the influences of environmental and system noise. The experimental result supports the theoretical prediction very well.
      通信作者: 吴坚, jwu2@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61376070,61474118)资助的课题.
      Corresponding author: Wu Jian, jwu2@buaa.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grant Nos. 61376070, 61474118).
    [1]

    Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207]

    [2]

    Gu T T, Huang S J, Yan C, Miao Z, Chang Z, Wang T Y 2015 Acta Phys. Sin. 64 064204 (in Chinese) [谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云 2015 物理学报 64 064204]

    [3]

    Wu Y C, Wu X C, Yao L C, Xue Z L, Wu C Y, Zhou H, Cen K 2017 Fuel 195 12

    [4]

    Yuan C J, Zhong L Y, Wang Y P, Xu L X, Qian X F 2004 Laser Technol. 28 482

    [5]

    Rong L, Xiao W, Pan F, Liu S, Li R 2010 Chin. Opt. Lett. 8 653

    [6]

    Cuche E, Marquet P, Dahlgren P, Depeursinge C 2000 Interferometry in Speckle Light (Berlin: Springer-Verlag) pp213-218

    [7]

    Ferraro P, de Nicola S, Finizio A, Coppola G, Grilli S, Magro C, Pierattini G 2003 Appl. Opt. 42 1938

    [8]

    Liebling M, Blu T, Unser M 2004 J. Opt. Soc. Am. A 21 367

    [9]

    Colomb T, Cuche E, Charrire F, Khn J, Aspert N, Frdric M, Pierre M, Christian D 2006 Appl. Opt. 45 851

    [10]

    Miccio L, Alfieri D, Grilli S, Ferraro P 2007 Appl. Phys. Lett. 90 041104

    [11]

    Cui H K, Wang D Y, Wang Y X, Liu C G, Zhao J, Li Y 2011 Acta Phys. Sin. 60 044201 (in Chinese) [崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳 2011 物理学报 60 044201]

    [12]

    Belashov A V, Petrov N V, Semenova I V, Vasyutinskii O S 2014 J. Phys. C 536 012003

    [13]

    Pang T 2015 J. Mod. Opt. 62 816

    [14]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

    [15]

    Cui H, Wang D, Wang Y, Zhao J, Zhang Y 2011 Opt. Commun. 284 4152

    [16]

    Liu Y, Wang Z, Li J, Gao J, Huang J 2016 Opt. Laser Eng. 86 115

    [17]

    Nguyen T, Bui V, Lam V, Raub C B, Chang L C, Nehmetallah G 2017 Opt. Express 25 15043

    [18]

    Kim D C, Cho H J, Shin S, Jung W, Yu Y H 2009 J. Opt. Soc. Korea 13 451

    [19]

    Wang H Y, Liu F F, Song X F, Liao W, Yu M J, Liu Z Q 2013 Chin. J. Lasers 40 196 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖微, 于梦杰, 刘佐强 2013 中国激光 40 196]

    [20]

    Liu S, Xiao W, Pan F 2014 Opt. Laser Technol. 57 169

    [21]

    Zhang D, Fan J, Zhao H, Lu X, Liu S, Zhong L 2014 Optik 125 5148

    [22]

    Wang D Y, Wang Y X, Guo S, Rong L, Zhang Y Z 2014 Acta Phys. Sin. 63 154205 (in Chinese) [王大勇, 王云新, 郭莎, 戎路, 张亦卓 2014 物理学报 63 154205]

    [23]

    Schnars U, Falldorf C, Watson J, Jptner W 2015 Digital Holography and Wavefront Sensing (Berlin: Heidelberg) pp39-68

    [24]

    Bioucas-Dias J M, Valadao G 2007 IEEE Trans. Image Process. 16 698

    [25]

    Durand F, Dorsey J 2002 Acm. T. Graphic 21 257

    [26]

    Allen J B 1977 IEEE. T. Acoust. Speech. 25 235

    [27]

    Donoho D L, Johnstone J M 1994 Biometrika 81 425

  • [1]

    Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207]

    [2]

    Gu T T, Huang S J, Yan C, Miao Z, Chang Z, Wang T Y 2015 Acta Phys. Sin. 64 064204 (in Chinese) [谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云 2015 物理学报 64 064204]

    [3]

    Wu Y C, Wu X C, Yao L C, Xue Z L, Wu C Y, Zhou H, Cen K 2017 Fuel 195 12

    [4]

    Yuan C J, Zhong L Y, Wang Y P, Xu L X, Qian X F 2004 Laser Technol. 28 482

    [5]

    Rong L, Xiao W, Pan F, Liu S, Li R 2010 Chin. Opt. Lett. 8 653

    [6]

    Cuche E, Marquet P, Dahlgren P, Depeursinge C 2000 Interferometry in Speckle Light (Berlin: Springer-Verlag) pp213-218

    [7]

    Ferraro P, de Nicola S, Finizio A, Coppola G, Grilli S, Magro C, Pierattini G 2003 Appl. Opt. 42 1938

    [8]

    Liebling M, Blu T, Unser M 2004 J. Opt. Soc. Am. A 21 367

    [9]

    Colomb T, Cuche E, Charrire F, Khn J, Aspert N, Frdric M, Pierre M, Christian D 2006 Appl. Opt. 45 851

    [10]

    Miccio L, Alfieri D, Grilli S, Ferraro P 2007 Appl. Phys. Lett. 90 041104

    [11]

    Cui H K, Wang D Y, Wang Y X, Liu C G, Zhao J, Li Y 2011 Acta Phys. Sin. 60 044201 (in Chinese) [崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳 2011 物理学报 60 044201]

    [12]

    Belashov A V, Petrov N V, Semenova I V, Vasyutinskii O S 2014 J. Phys. C 536 012003

    [13]

    Pang T 2015 J. Mod. Opt. 62 816

    [14]

    Cuche E, Marquet P, Depeursinge C 2000 Appl. Opt. 39 4070

    [15]

    Cui H, Wang D, Wang Y, Zhao J, Zhang Y 2011 Opt. Commun. 284 4152

    [16]

    Liu Y, Wang Z, Li J, Gao J, Huang J 2016 Opt. Laser Eng. 86 115

    [17]

    Nguyen T, Bui V, Lam V, Raub C B, Chang L C, Nehmetallah G 2017 Opt. Express 25 15043

    [18]

    Kim D C, Cho H J, Shin S, Jung W, Yu Y H 2009 J. Opt. Soc. Korea 13 451

    [19]

    Wang H Y, Liu F F, Song X F, Liao W, Yu M J, Liu Z Q 2013 Chin. J. Lasers 40 196 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖微, 于梦杰, 刘佐强 2013 中国激光 40 196]

    [20]

    Liu S, Xiao W, Pan F 2014 Opt. Laser Technol. 57 169

    [21]

    Zhang D, Fan J, Zhao H, Lu X, Liu S, Zhong L 2014 Optik 125 5148

    [22]

    Wang D Y, Wang Y X, Guo S, Rong L, Zhang Y Z 2014 Acta Phys. Sin. 63 154205 (in Chinese) [王大勇, 王云新, 郭莎, 戎路, 张亦卓 2014 物理学报 63 154205]

    [23]

    Schnars U, Falldorf C, Watson J, Jptner W 2015 Digital Holography and Wavefront Sensing (Berlin: Heidelberg) pp39-68

    [24]

    Bioucas-Dias J M, Valadao G 2007 IEEE Trans. Image Process. 16 698

    [25]

    Durand F, Dorsey J 2002 Acm. T. Graphic 21 257

    [26]

    Allen J B 1977 IEEE. T. Acoust. Speech. 25 235

    [27]

    Donoho D L, Johnstone J M 1994 Biometrika 81 425

  • [1] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [2] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [3] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [4] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [5] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [6] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [7] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术. 物理学报, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [8] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [9] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [10] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [11] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统. 物理学报, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [12] 马媛, 季小玲. 倾斜离轴高斯-谢尔模型光束在大气湍流中通过猫眼光学镜头反射光的光强特性. 物理学报, 2013, 62(9): 094214. doi: 10.7498/aps.62.094214
    [13] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究. 物理学报, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [14] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [15] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [16] 李俊昌, 樊则宾, Tankam Patrice, 宋庆和, Picart Pascal. 无零级衍射干扰的彩色数字全息研究. 物理学报, 2011, 60(3): 034204. doi: 10.7498/aps.60.034204
    [17] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究. 物理学报, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [18] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究. 物理学报, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [19] 刘普生, 程 科, 吕百达. 离轴位相奇点的动态传输. 物理学报, 2008, 57(3): 1683-1688. doi: 10.7498/aps.57.1683
    [20] 高曾辉, 吕百达. 矢量非傍轴离轴高斯光束的传输. 物理学报, 2005, 54(11): 5144-5148. doi: 10.7498/aps.54.5144
计量
  • 文章访问数:  4011
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-25
  • 修回日期:  2018-01-28
  • 刊出日期:  2018-05-05

一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法

  • 1. 北京航空航天大学物理科学与核能工程学院, 北京 100191
  • 通信作者: 吴坚, jwu2@buaa.edu.cn
    基金项目: 国家自然科学基金(批准号:61376070,61474118)资助的课题.

摘要: 离轴数字全息中使用倾斜的平面参考波以消除成像中的零级衍射和共轭像是一种简捷和常用的方法,然而该方法遇到的一个困扰是,由于倾斜参考波引入了附加的载波频率并很难通过实验测量准确地获得附加的载波频率值或倾角,因此会导致重建的相图出现一定的倾斜畸变而无法完全修正.本文提出了一种数字参考平面算法以解决这一问题.该算法利用重建相图的平坦区域选点构建一个能准确表征相图倾斜的数字参考平面,并建立该平面参量与参考波载波频率的数学关系和作为随后相图畸变修正迭代计算的判据.该算法简单有效,不仅能实现对倾斜相位畸变的准确修正,而且能准确地获得倾斜平面参考波的附加载波频率.由于在相位解包裹重建中结合了抑噪处理,因此该方法在环境和系统噪声的影响下仍然有效,实验结果验证了理论设计的有效性.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回