搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意复包络信号的匀速运动目标回波脉间补偿及相干积累

冯西安 张杨梅

引用本文:
Citation:

任意复包络信号的匀速运动目标回波脉间补偿及相干积累

冯西安, 张杨梅

Motion-compensated coherent integration of constant moving target echoes with arbitrary complex envelope

Feng Xi-An, Zhang Yang-Mei
PDF
导出引用
  • 现代声呐、水下制导等水声探测系统常常使用窄带脉冲、调制、编码、伪随机等种类繁多的发射信号波形来满足低信噪比检测、高分辨估计、抗干扰、主动隐蔽探测的应用需求.针对这一情况,本文研究了任意信号的长时间积累问题,给出了一种任意复包络信号的匀速运动目标回波脉间补偿及相干积累检测方法.通过构建任意发射信号波形的广义模糊函数,将匹配滤波器输出表示为所构造的广义模糊函数,使得任意复包络信号的脉压波形不仅能够用统一的数学模型来表述和计算,而且能够提供多脉冲回波的距离走动信息和多普勒频移信息,为多脉冲距离位置对齐和Fourier变换(FFT)积累提供了依据.对于用广义模糊函数表示的匹配滤波器输出,采用Keystone变换将复包络对齐,消除了距离走动,采用FFT补偿多普勒频移项,实现了任意复包络信号的长时间相干积累.对于水下探测中使用的连续波信号、线性调频信号以及复杂的m序列编码信号、Costas跳频编码信号波形进行了信号积累及检测的计算机仿真,验证了任意复包络信号的匀速运动目标回波脉间补偿及相干积累的正确性.消声水池实验验证了该方法的有效性.
    Signal integration, as an effective method of detecting weak target, is widely used in areas of radar, sonar, etc. In previous studies of long-time coherent integration, researchers usually established a multi-pulse echo model with linear frequency modulation (LFM) signal due to its good compression performance and large Doppler tolerance. Then, perfect analytical formula can be deduced to compensate for range migration and Doppler spread, which is helpful in analyzing the mechanism of long-time coherent integration in depth. However, besides LFM, a wide variety of signal waveforms are also used in modern sonar and underwater guidance system to meet the requirements for diverse applications. For instance, continuous wave (CW) pulse is often used in signal detection, high resolution direction of arrival (DOA) estimation, and velocity estimation, while large time-bandwidth product waveforms such as modulated signal, coded signal, and pseudo-random signal are utilized for special tasks like anti-interference detection, channel matching, and active concealed detection. Therefore, the formulas and corresponding instructive conclusions deduced by LFM have no generality when other sonar waveforms are used in pulse integration. In this paper, we focus on long-time coherent integration for arbitrary signal reflected by underwater target moving with a uniform velocity and propose a motion-compensated coherent integration method for arbitrary complex envelop signal. A kind of general ambiguity function (GAF) for transmitted signal is defined to present a unified expression based on GAF for the output of the matched filter. The operation not only helps us to describe and calculate the pulse compression form of the arbitrary complex envelop by using a general mathematical model, but also provides information about the range migration and Doppler frequency shift of the multi-pulse echo, which is needed in pulse range alignment and FFT integration. For the matched filter output expressed by the GAF, Keystone transform is utilized to correct the complex envelop of the multi-pulse echo and eliminate the range walk. Then, Doppler frequency shift is compensated for by performing FFT transform, and the long-time coherent integration for arbitrary complex envelop is realized. To verify the correctness of the proposed method, we carry out the computer simulation on both signal integration and detection performance by using four sonar waveforms, i.e., CW signal, LFM signal, m-sequence phase-coded signal, and Costas frequency hop coded signal. The simulation results show that the proposed motion-compensated coherent integration method is applicable to arbitrary complex envelop signal. We also design an anechoic water tank experiment scheme which can successfully obtain the multi-pulse echoes of constant moving target. The motion-compensated coherent integration of the experimental data of the above-mentioned four waveforms further validates the effectiveness of the proposed method.
      通信作者: 张杨梅, zhangyangmei1@hotmail.com
    • 基金项目: 国家自然科学基金(批准号:61671378)资助的课题.
      Corresponding author: Zhang Yang-Mei, zhangyangmei1@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671378).
    [1]

    North D O 1963 Proc. IEEE 51 1016

    [2]

    Liu Z L, Liao G S, Yang Z W 2012 Acta Electron. Sin. 40 799(in Chinese) [刘志凌, 廖桂生, 杨志伟 2012 电子学报 40 799]

    [3]

    Zhang L, Sheng J L, Duan J, Xing M D, Qiao Z J, Bao Z 2013 EURASIP J. Adv. Signal Process. 2013 33

    [4]

    Dong Q, Zhang L, Xu G, Xing M D 2014 J. Xian Jiaotong Univ. 48 107(in Chinese) [董祺, 张磊, 徐刚, 邢孟道 2014 西安交通大学学报 48 107]

    [5]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 102

    [6]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 109

    [7]

    Pang C S, Hou H L, Han Y 2012 J. Electron. Infor. Technol. 34 754(in Chinese) [庞存锁, 侯慧玲, 韩焱 2012 电子与信息学报 34 754]

    [8]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 1186

    [9]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 2473

    [10]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 48 991

    [11]

    Xu J, Xia X G, Peng S B, Yu J, Peng Y N, Qian L C 2012 IEEE Trans. Sig. Proc. 60 6190

    [12]

    Perry R P, Dipietro R C, Kozma A, Vaccaro J J 1994 Algorithms for Synthetic Aperture Radar Imagery (Bellingham: SPIE) p160

    [13]

    Perry R P, Dipietro R C, Fante R L 1999 IEEE Trans. Aerosp. Electron. Syst. 35 188

    [14]

    Ruan H, Wu Y H, Jia X, Ye W 2013 IEEE Geo. Rem. Sens. Lett. 11 128

    [15]

    Zhao Y B, Zhou X P, Wang J 2013 J. Xidian Univ. Nat. Sci. 40 98(in Chinese) [赵永波, 周晓佩, 王娟 2013 西安电子科技大学学报自然科学版 40 98]

    [16]

    Guo B F, Shang C X, Wang J L, Gao M G, Fu X J 2014 Acta Phys. Sin. 63 238406(in Chinese) [郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军 2014 物理学报 63 238406]

    [17]

    Feng X A, Zhang Y M, Su J J 2014 J. Northwest. Polytechnical Univ. 32 882(in Chinese) [冯西安, 张杨梅, 苏建军 2014 西北工业大学学报 32 882]

    [18]

    He H, Li J, Petre S 2012 Waveform Design for Active Sensing Systems: A Computational Approach (Cambridge: Cambridge Univ. Press) pp18-25

    [19]

    Zhang Y M 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [张杨梅 2017 博士学位论文 (西安: 西北工业大学)]

    [20]

    Guo H W, Liang D N, Wang Y, Huang X T, Dong Z 2003 Proceedings of the 2003 International Society for Optics and Photon. AeroSense Orlando, United States, April 21-25, 2003 p1

  • [1]

    North D O 1963 Proc. IEEE 51 1016

    [2]

    Liu Z L, Liao G S, Yang Z W 2012 Acta Electron. Sin. 40 799(in Chinese) [刘志凌, 廖桂生, 杨志伟 2012 电子学报 40 799]

    [3]

    Zhang L, Sheng J L, Duan J, Xing M D, Qiao Z J, Bao Z 2013 EURASIP J. Adv. Signal Process. 2013 33

    [4]

    Dong Q, Zhang L, Xu G, Xing M D 2014 J. Xian Jiaotong Univ. 48 107(in Chinese) [董祺, 张磊, 徐刚, 邢孟道 2014 西安交通大学学报 48 107]

    [5]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 102

    [6]

    Carlson B D, Evans E D, Wilson S L 1994 IEEE Trans. Aerosp. Electron. Syst. 30 109

    [7]

    Pang C S, Hou H L, Han Y 2012 J. Electron. Infor. Technol. 34 754(in Chinese) [庞存锁, 侯慧玲, 韩焱 2012 电子与信息学报 34 754]

    [8]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 1186

    [9]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 47 2473

    [10]

    Yu J, Xu J, Peng Y N, Xia X G 2012 IEEE Trans. Aerosp. Electron. Syst. 48 991

    [11]

    Xu J, Xia X G, Peng S B, Yu J, Peng Y N, Qian L C 2012 IEEE Trans. Sig. Proc. 60 6190

    [12]

    Perry R P, Dipietro R C, Kozma A, Vaccaro J J 1994 Algorithms for Synthetic Aperture Radar Imagery (Bellingham: SPIE) p160

    [13]

    Perry R P, Dipietro R C, Fante R L 1999 IEEE Trans. Aerosp. Electron. Syst. 35 188

    [14]

    Ruan H, Wu Y H, Jia X, Ye W 2013 IEEE Geo. Rem. Sens. Lett. 11 128

    [15]

    Zhao Y B, Zhou X P, Wang J 2013 J. Xidian Univ. Nat. Sci. 40 98(in Chinese) [赵永波, 周晓佩, 王娟 2013 西安电子科技大学学报自然科学版 40 98]

    [16]

    Guo B F, Shang C X, Wang J L, Gao M G, Fu X J 2014 Acta Phys. Sin. 63 238406(in Chinese) [郭宝锋, 尚朝轩, 王俊岭, 高梅国, 傅雄军 2014 物理学报 63 238406]

    [17]

    Feng X A, Zhang Y M, Su J J 2014 J. Northwest. Polytechnical Univ. 32 882(in Chinese) [冯西安, 张杨梅, 苏建军 2014 西北工业大学学报 32 882]

    [18]

    He H, Li J, Petre S 2012 Waveform Design for Active Sensing Systems: A Computational Approach (Cambridge: Cambridge Univ. Press) pp18-25

    [19]

    Zhang Y M 2017 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese) [张杨梅 2017 博士学位论文 (西安: 西北工业大学)]

    [20]

    Guo H W, Liang D N, Wang Y, Huang X T, Dong Z 2003 Proceedings of the 2003 International Society for Optics and Photon. AeroSense Orlando, United States, April 21-25, 2003 p1

  • [1] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, 2018, 67(1): 013302. doi: 10.7498/aps.67.20171464
    [2] 郭力仁, 胡以华, 董骁, 李敏乐. 运动目标激光微多普勒效应平动补偿和微动参数估计. 物理学报, 2018, 67(15): 150701. doi: 10.7498/aps.67.20172754
    [3] 刘桢, 黄洁, 王建涛, 赵拥军, 陈世文. 基于伪相关函数的多级电平编码符号信号通用无模糊跟踪方法. 物理学报, 2017, 66(13): 139101. doi: 10.7498/aps.66.139101
    [4] 曾喆昭, 雷妮, 盛立锃. 不确定混沌系统的多项式函数模型补偿控制. 物理学报, 2013, 62(15): 150506. doi: 10.7498/aps.62.150506
    [5] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制. 物理学报, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [6] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法. 物理学报, 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [7] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性. 物理学报, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [8] 行鸿彦, 程艳燕, 徐伟. 基于广义窗函数和最小二乘支持向量机的混沌背景下微弱信号检测. 物理学报, 2012, 61(10): 100506. doi: 10.7498/aps.61.100506
    [9] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [10] 叶红霞, 金亚秋. 跨界面目标电磁散射Sommerfeld积分的双重广义函数束拟合离散复镜像方法. 物理学报, 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [11] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数. 物理学报, 2007, 56(4): 2160-2167. doi: 10.7498/aps.56.2160
    [12] 但有全, 张 彬. 复宗量厄米-高斯光束的相干模表示. 物理学报, 2006, 55(2): 712-716. doi: 10.7498/aps.55.712
    [13] 彭润伍, 范滇元. 洛仑兹脉冲光束的复振幅包络解和复解析信号解的比较研究. 物理学报, 2005, 54(6): 2680-2685. doi: 10.7498/aps.54.2680
    [14] 倪致祥. 非简谐振子广义相干态的叠加态. 物理学报, 1997, 46(9): 1687-1692. doi: 10.7498/aps.46.1687
    [15] 林琨智. 无反射势阱中粒子运动的双波函数描述. 物理学报, 1996, 45(3): 360-369. doi: 10.7498/aps.45.360
    [16] 徐子(马文). 非简谐振子的奇偶广义相干态. 物理学报, 1996, 45(11): 1807-1811. doi: 10.7498/aps.45.1807
    [17] 孙鸣超, 赵仁, 赵峥. 任意加速运动的Kerr黑洞热辐射. 物理学报, 1995, 44(7): 1018-1022. doi: 10.7498/aps.44.1018
    [18] 光学信息处理组. 用非相干光处理大运动模糊图象. 物理学报, 1976, 25(2): 124-128. doi: 10.7498/aps.25.124
    [19] 郭汉英, 吴詠时, 李根道. 广义相对论的旋量和复矢量形式. 物理学报, 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
    [20] 刘盛纲, 刘世明. 任意截面柱面静电系统中电子运动的分析. 物理学报, 1965, 21(12): 2015-2023. doi: 10.7498/aps.21.2015
计量
  • 文章访问数:  3025
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 修回日期:  2018-03-07
  • 刊出日期:  2018-06-05

任意复包络信号的匀速运动目标回波脉间补偿及相干积累

  • 1. 西北工业大学航海学院, 西安 710072;
  • 2. 西安航空学院电子工程学院, 西安 710077
  • 通信作者: 张杨梅, zhangyangmei1@hotmail.com
    基金项目: 国家自然科学基金(批准号:61671378)资助的课题.

摘要: 现代声呐、水下制导等水声探测系统常常使用窄带脉冲、调制、编码、伪随机等种类繁多的发射信号波形来满足低信噪比检测、高分辨估计、抗干扰、主动隐蔽探测的应用需求.针对这一情况,本文研究了任意信号的长时间积累问题,给出了一种任意复包络信号的匀速运动目标回波脉间补偿及相干积累检测方法.通过构建任意发射信号波形的广义模糊函数,将匹配滤波器输出表示为所构造的广义模糊函数,使得任意复包络信号的脉压波形不仅能够用统一的数学模型来表述和计算,而且能够提供多脉冲回波的距离走动信息和多普勒频移信息,为多脉冲距离位置对齐和Fourier变换(FFT)积累提供了依据.对于用广义模糊函数表示的匹配滤波器输出,采用Keystone变换将复包络对齐,消除了距离走动,采用FFT补偿多普勒频移项,实现了任意复包络信号的长时间相干积累.对于水下探测中使用的连续波信号、线性调频信号以及复杂的m序列编码信号、Costas跳频编码信号波形进行了信号积累及检测的计算机仿真,验证了任意复包络信号的匀速运动目标回波脉间补偿及相干积累的正确性.消声水池实验验证了该方法的有效性.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回