搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

像散Bessel光束自重建特性的理论和实验研究

杨艳飞 陈婧 吴逢铁 胡润 张惠忠 胡汉青

引用本文:
Citation:

像散Bessel光束自重建特性的理论和实验研究

杨艳飞, 陈婧, 吴逢铁, 胡润, 张惠忠, 胡汉青

Theoretical and experimental study of self-reconstruction property of astigmatic Bessel beam

Yang Yan-Fei, Chen Jing, Wu Feng-Tie, Hu Run, Zhang Hui-Zhong, Hu Han-Qing
PDF
导出引用
  • 基于菲涅耳衍射积分理论和巴比涅原理,推导出像散Bessel光束经圆形障碍物后的光强分布一般表达式.数值模拟了像散Bessel光束经圆形障碍物遮挡后光场的自重建过程,并设计相关实验进行验证,实验结果与理论模拟基本符合.结果表明:零阶像散Bessel光束经过轴上和离轴障碍物后均会发生光束重建现象.随着传输距离的增加,像散Bessel光束的外轮廓尺寸变大、中心光点阵列数增多,逐渐重建出不同于障碍物前的完整光束.并且观察到光束在重建过程中横向和纵向的重建速度并不一致,存在一定的速度差.利用螺旋相位板产生高阶像散Bessel光束,验证了高阶像散Bessel光束经障碍物遮挡后同样具有自重建特性.研究结果对像散Bessel光束在多层面粒子操纵方面的应用具有参考价值.
    In this paper, the self-reconstruction property of astigmatic Bessel beam is studied experimentally and theoretically. Based on the Fresnel diffraction integral theory and Babinet principle, the general expression of the intensity distribution of astigmatic Bessel beams passing through a circular obstacle is derived. The cross-section light intensity at transmission distance of, 10, 30, and 80 mm after astigmatism of the astigmatic Bessel beam are occluded by circular obstacles. The self-reconstruction process of the light field is observed and verified by using an specially designed experimental setup. In the experiment, we choose He-Ne laser as a light source, collimate and expand the beam through a telescope system, and a zero-order astigmatic Bessel beam is generated by a beam vertically incident on the tilted axicon after the diaphragm. A circular obstacle with a radius of 0.2 mm is placed at a distance of 200 mm behind the axicon. Finally, the cross-section intensities at different distances are observed and recorded by a microscope. The experimental phenomena are in good agreement with the theoretical prediction. The results show that the reconstruction of the zero-order astigmatic Bessel beams will occur after passing through the on-axis and off-axis obstacles. And as the transmission distance increases, the outer contour size of the astigmatic Bessel beam becomes larger, and the number of central spot arrays increases, and the complete beam is gradually reconstructed. Particularly, this feature is different from the behavior of the non-diffracting Bessel beam, which maintains the light field unchanged during transmission and has a single central spot. It is expected to be applied to multi-layer multi-particle control. And a new optical property is discovered in the experiments: the reconstruction speed of the beam in the horizontal and vertical direction are not consistent in the reconstruction process, and there is a certain speed difference. Further, we add a spiral phase plate between the diaphragm and the axicon to produce a high-order astigmatic Bessel beam. And it is verified that the high-order astigmatism Bessel beam has the same self-reconstruction characteristics after being shielded by obstacles. Compared with the zero-order aperture system, the high-order beam can not only expand the operating range, but also use the orbital angular momentum carried by the beam to achieve light rotation, which makes the particle manipulation more flexible. The research proves the self-reconstruction characteristics of astigmatic Bessel beams theoretically and experimentally, and broadens the research range of astigmatic Bessel beams. The research results have practical significance and application value in the field of optical micro-manipulation.
      通信作者: 吴逢铁, fengtie@hqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11774103)和国家自然科学青年基金(批准号:61605049,61802136)资助的课题.
      Corresponding author: Wu Feng-Tie, fengtie@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774103) and the Young Scientist Fund of the National Natural Science Foundation of China (Grant Nos. 61605049, 61802136).
    [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 288

    [3]

    Ambrosio L A, Zamboni-Rached M 2015 J. Opt. Soc. Am. B 32 B37

    [4]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [5]

    Planchon T A, Liang G, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [6]

    Luo H, Zhou J, Wen S, et al. 2015 Opt. Lett. 40 5506

    [7]

    Liu Y, Ke Y, Zhou J, et al. 2017 Sci. Rep. 7 44096

    [8]

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203 (in Chinese) [陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203]

    [9]

    Rao A S, Samanta G K 2018 Opt. Lett. 43 3029

    [10]

    Zhao B, Zhu L 1998 Appl. Opt. 37 2563

    [11]

    Thaning A, Jaroszewicz Z, Friberg A T 2003 Appl. Opt. 42 9

    [12]

    Liu S, Li Y F, Cai X Y, Zhang N 2016 Acta Phys. Sin. 65 194210 (in Chinese) [刘莎, 李亚飞, 蔡先勇, 张楠 2016 物理学报 65 194210]

    [13]

    Jiang X G, Wu F T 2008 Acta Phys. Sin. 57 4207 (in Chinese) [江新光, 吴逢铁 2008 物理学报 57 4207]

    [14]

    Hu R, Wu F T, Zhu Q Z, Yang Y F 2017 Acta Opt. Sin. 37 0826002 (in Chinese) [胡润, 吴逢铁, 朱清智, 杨艳飞 2017 光学学报 37 0826002]

    [15]

    Yang Y F, Wu F T, Zhu Q Z, Hu R 2018 Acta Opt. Sin. 38 0505004 (in Chinese) [杨艳飞, 吴逢铁, 朱清智, 胡润 2018 光学学报 38 0505004]

    [16]

    Garcés-Chávez V, Mcgloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [17]

    Lee K S, Rolland J P 2008 Opt. Lett. 33 1696

    [18]

    Weber N, Spether D, Seifert A, Zappe H 2012 J. Opt. Soc. Am. A 29 808

    [19]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [20]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. China: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [21]

    Li D, Wu F T, Xie X X, Sun C 2015 Acta Phys. Sin. 64 014201 (in Chinese) [李冬, 吴逢铁, 谢晓霞, 孙川 2015 物理学报 64 014201]

    [22]

    Anguianomorales M, Martínez A, Iturbecastillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [23]

    Yang G G, Song F J 2008 Higher Physical Optics (2nd Edition) (Hefei: China University of Science and Technology Press) pp81-82 (in Chinese) [羊国光, 宋菲君 2008 高等物理光学(第2版) (合肥: 中国科学技术大学出版社) 第81–82页]

  • [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 288

    [3]

    Ambrosio L A, Zamboni-Rached M 2015 J. Opt. Soc. Am. B 32 B37

    [4]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [5]

    Planchon T A, Liang G, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [6]

    Luo H, Zhou J, Wen S, et al. 2015 Opt. Lett. 40 5506

    [7]

    Liu Y, Ke Y, Zhou J, et al. 2017 Sci. Rep. 7 44096

    [8]

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203 (in Chinese) [陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203]

    [9]

    Rao A S, Samanta G K 2018 Opt. Lett. 43 3029

    [10]

    Zhao B, Zhu L 1998 Appl. Opt. 37 2563

    [11]

    Thaning A, Jaroszewicz Z, Friberg A T 2003 Appl. Opt. 42 9

    [12]

    Liu S, Li Y F, Cai X Y, Zhang N 2016 Acta Phys. Sin. 65 194210 (in Chinese) [刘莎, 李亚飞, 蔡先勇, 张楠 2016 物理学报 65 194210]

    [13]

    Jiang X G, Wu F T 2008 Acta Phys. Sin. 57 4207 (in Chinese) [江新光, 吴逢铁 2008 物理学报 57 4207]

    [14]

    Hu R, Wu F T, Zhu Q Z, Yang Y F 2017 Acta Opt. Sin. 37 0826002 (in Chinese) [胡润, 吴逢铁, 朱清智, 杨艳飞 2017 光学学报 37 0826002]

    [15]

    Yang Y F, Wu F T, Zhu Q Z, Hu R 2018 Acta Opt. Sin. 38 0505004 (in Chinese) [杨艳飞, 吴逢铁, 朱清智, 胡润 2018 光学学报 38 0505004]

    [16]

    Garcés-Chávez V, Mcgloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [17]

    Lee K S, Rolland J P 2008 Opt. Lett. 33 1696

    [18]

    Weber N, Spether D, Seifert A, Zappe H 2012 J. Opt. Soc. Am. A 29 808

    [19]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [20]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. China: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [21]

    Li D, Wu F T, Xie X X, Sun C 2015 Acta Phys. Sin. 64 014201 (in Chinese) [李冬, 吴逢铁, 谢晓霞, 孙川 2015 物理学报 64 014201]

    [22]

    Anguianomorales M, Martínez A, Iturbecastillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [23]

    Yang G G, Song F J 2008 Higher Physical Optics (2nd Edition) (Hefei: China University of Science and Technology Press) pp81-82 (in Chinese) [羊国光, 宋菲君 2008 高等物理光学(第2版) (合肥: 中国科学技术大学出版社) 第81–82页]

  • [1] 吴文兵, 圣宗强, 吴宏伟. 平板式螺旋相位板的设计与应用. 物理学报, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [2] 陈家祯, 郑子华, 叶锋, 连桂仁, 许力. 三维物体多重菲涅耳计算全息水印与无干扰可控重建方法. 物理学报, 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [3] 潘安, 王东, 史祎诗, 姚保利, 马臻, 韩洋. 多波长同时照明的菲涅耳域非相干叠层衍射成像. 物理学报, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [4] 任志君, 李晓东, 金洪震, 施逸乐, 杨照清. 双Pearcey光束的构建及数学机理研究. 物理学报, 2016, 65(21): 214208. doi: 10.7498/aps.65.214208
    [5] 李冬, 吴逢铁, 谢晓霞, 孙川. 无衍射 Mathieu光束自重建特性的理论和实验研究. 物理学报, 2015, 64(1): 014201. doi: 10.7498/aps.64.014201
    [6] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究. 物理学报, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [7] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [8] 宋洪胜, 庄桥, 刘桂媛, 秦希峰, 程传福. 菲涅耳深区散斑强度统计特性及演化. 物理学报, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [9] 刘兰琴, 张颖, 耿远超, 王文义, 朱启华, 景峰, 魏晓峰, 黄晚晴. 小宽带光谱色散匀滑光束传输特性研究. 物理学报, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [10] 范丹丹, 吴逢铁, 程治明, 朱健强. 非相干光源无衍射光的自重建. 物理学报, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [11] 陈小艺, 刘曼, 李海霞, 张美娜, 宋洪胜, 滕树云, 程传福. 弱散射体产生的菲涅耳极深区散斑场相位涡旋演化的实验研究. 物理学报, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [12] 范丹丹, 吴逢铁, 程治明, 王涛, 杜团结, 朱健强. 障碍物后周期性Bottle beam的自重建. 物理学报, 2012, 61(24): 244104. doi: 10.7498/aps.61.244104
    [13] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [14] 范丹丹, 张前安, 程治明, 郑维涛, 吴逢铁. Bessel光束自重建的模拟仿真与实验验证. 物理学报, 2012, 61(16): 164103. doi: 10.7498/aps.61.164103
    [15] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析. 物理学报, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [16] 严敏逸, 王旦清, 马忠元, 姚尧, 刘广元, 李伟, 黄信凡, 陈坤基, 徐骏, 徐岭. 二维移相光栅光强分布的计算及在制备有序纳米硅阵列中的应用. 物理学报, 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [17] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [18] 彭 翔, 位恒政, 张 鹏. 基于菲涅耳域的双随机相位编码系统的选择明文攻击. 物理学报, 2007, 56(7): 3924-3930. doi: 10.7498/aps.56.3924
    [19] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [20] 滕树云, 程传福, 刘 曼, 刘立人, 徐至展. 菲涅耳衍射区和夫琅和费衍射区的动态部分相干光散斑场特性. 物理学报, 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
计量
  • 文章访问数:  2934
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-25
  • 修回日期:  2018-10-02
  • 刊出日期:  2019-11-20

像散Bessel光束自重建特性的理论和实验研究

  • 1. 华侨大学信息科学与工程学院, 福建省光传输与变换重点实验室, 厦门 361021
  • 通信作者: 吴逢铁, fengtie@hqu.edu.cn
    基金项目: 国家自然科学基金(批准号:11774103)和国家自然科学青年基金(批准号:61605049,61802136)资助的课题.

摘要: 基于菲涅耳衍射积分理论和巴比涅原理,推导出像散Bessel光束经圆形障碍物后的光强分布一般表达式.数值模拟了像散Bessel光束经圆形障碍物遮挡后光场的自重建过程,并设计相关实验进行验证,实验结果与理论模拟基本符合.结果表明:零阶像散Bessel光束经过轴上和离轴障碍物后均会发生光束重建现象.随着传输距离的增加,像散Bessel光束的外轮廓尺寸变大、中心光点阵列数增多,逐渐重建出不同于障碍物前的完整光束.并且观察到光束在重建过程中横向和纵向的重建速度并不一致,存在一定的速度差.利用螺旋相位板产生高阶像散Bessel光束,验证了高阶像散Bessel光束经障碍物遮挡后同样具有自重建特性.研究结果对像散Bessel光束在多层面粒子操纵方面的应用具有参考价值.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回