搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rashba自旋轨道耦合下square-octagon晶格的拓扑相变

杨圆 陈帅 李小兵

引用本文:
Citation:

Rashba自旋轨道耦合下square-octagon晶格的拓扑相变

杨圆, 陈帅, 李小兵

Topological phase transitions in square-octagon lattice with Rashba spin-orbit coupling

Yang Yuan, Chen Shuai, Li Xiao-Bing
PDF
导出引用
  • 本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.
    Motivated by the square-octagon lattice which supports topological phases over a wide range of parameters and a number of interesting quantum phase transitions in the phase diagram when considering the intrinsic spin-orbit coupling, we investigate the topological phase transitions in the isotropic square-octagon lattice combining the effects of both spin-orbit couplings and exchange field. The inversion symmetry and time-reversal symmetry are broken when both Rashba spin-orbit coupling and exchange field are present. The Z2 index is not applicable for quantum spin Hall systems without time-reversal symmetry, but the spin Chern number remains valid even in the absence of time-reversal symmetry. Therefore, we use the Chern number and spin Chern number to describe the topological properties of the system. We explore that a variety of topologically nontrivial states appear with changing the exchange field, including time-reversal-symmetry-broken quantum spin Hall states and quantum anomalous Hall states. The phase transition between these topological phases is accompanied by the closing of band gaps. Interestingly, the quantum spin Hall effect described by nonzero spin Chern number is found to remain intact when the time-reversal symmetry is broken. Furthermore, the variation of the amplitude of the exchange field and filling factor drive interesting topological phase transitions from the time-reversal-symmetry-broken quantum spin Hall phase to spin-filtered quantum anomalous Hall phase. A spin-filtered quantum anomalous Hall phase is characterized by the presence of edge states with only one spin component, which provides an interesting route towards quantum spin manipulation. We also present the band structures, edge state wave functions, and spin polarizations of the different topological phases in the system. It is demonstrated that the energy spectra of edge states are in good agreement with the topological characterization based on the Chern number and spin Chern number. In particular, we observe that gapless edge states can appear in a time-reversal-symmetry-broken quantum spin Hall system, but the corresponding spin spectrum gap remains open on the edges. Recently, an important functional material ZnO with quasi square-octagon lattice has been found experimentally. Consequently, the results found in our work are helpful for understanding the property of square-octagon lattice and studying the real materials with square-octagon structure.
    • 基金项目: 国家自然科学基金(批准号:11647145)、南京大学固体微结构物理国家重点实验室开放课题(批准号:M31024)和江苏省高校自然科学研究项目(批准号:16KJB430012)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11647145), the National Laboratory of Solid State Microstructures (Grant No. M31024), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB430012).
    [1]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [2]

    Bernevig B A, Zhang S C 2005 Phys. Rev. Lett. 96 106802

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [5]

    Ren Y F, Qiao Z H, Niu Q 2016 Rep. Prog. Phys. 79 066501

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [7]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306

    [8]

    Prodan E 2009 Phys. Rev. B 80 125327

    [9]

    Prodan E 2010 New J. Phys. 12 065003

    [10]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [11]

    Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y, Sheng D N 2011 Phys. Rev. Lett. 107 066602

    [12]

    Du L J, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802

    [13]

    Yao Y G, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401

    [14]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310

    [15]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [16]

    Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q 2010 Phys. Rev. B 82 161414

    [17]

    Qiao Z, Jiang H, Li X, Yao Y, Niu Q 2012 Phys. Rev. B 85 115439

    [18]

    Zhang Z Y 2011 J. Phys. Condens. Matter 23 365801

    [19]

    Chen M S, Wan S L 2012 J. Phys. Condens. Matter 24 325502

    [20]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102

    [21]

    Rüegg A, Wen J, Fiete G A 2010 Phys. Rev. B 81 205115

    [22]

    Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H, Yang Z 2016 Phys. Rev. B 94 235449

    [23]

    Kargarian M, Fiete G A 2010 Phys. Rev. B 82 085106

    [24]

    Liu X P, Chen W C, Wang Y F, Gong C D 2013 J. Phys. Condens. Matter 25 305602

    [25]

    Bao A, Tao H S, Liu H D, Zhang X Z, Liu W M 2015 Sci. Rep. 4 6918

    [26]

    Bao A, Zhang X F, Zhang X Z 2015 Chin. Phys. B 24 050310

    [27]

    Zhang L, Wang F 2017 Phys. Rev. Lett. 118 087201

    [28]

    Kang Y T, Yang F, Yao D X 2017 arXiv: 1801.00220. https://arxiv.org/abs/1801.00220

    [29]

    Yang Y, Yang J, Li X, Zhao Y 2018 Phys. Lett. A 382 723

    [30]

    Panahi P S, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M, Sengstock K 2011 Nat. Phys. 7 434

    [31]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, StamperKurn D M 2012 Phys. Rev. Lett. 108 045305

    [32]

    He M R, Yu R, Zhu J 2012 Angew. Chem. 124 7864

    [33]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674

    [34]

    Taillefumier M, Dugaev V K, Canals B, Lacroix C, Bruno P 2008 Phys. Rev. B 78 155330

    [35]

    Hatsugai Y 1993 Phys. Rev. B 48 11851

    [36]

    Hatsugai Y 1993 Phys. Rev. Lett. 71 3697

    [37]

    Sun K, Fradkin E 2008 Phys. Rev. B 78 245122

    [38]

    Goldman N, Beugeling W, Smith C M 2012 Europhys. Lett. 97 23003

    [39]

    Beugeling W, Goldman N, Smith C M 2012 Phys. Rev. Lett. 86 075118

    [40]

    Li H C, Sheng L, Shen R, Shao L B, Wang B G, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [41]

    Miao M, Yan Q, van de Walle C, Lou W, Li L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [42]

    Zhang D, Lou W, Miao M, Zhang S, Chang K 2013 Phys. Rev. Lett. 111 156402

    [43]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237

    [44]

    Lin Y J, Compton R L, Jiménez-García K, Porto J V, Spielman I B 2009 Nature 462 628

    [45]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

  • [1]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801

    [2]

    Bernevig B A, Zhang S C 2005 Phys. Rev. Lett. 96 106802

    [3]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [5]

    Ren Y F, Qiao Z H, Niu Q 2016 Rep. Prog. Phys. 79 066501

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802

    [7]

    Moore J E, Balents L 2007 Phys. Rev. B 75 121306

    [8]

    Prodan E 2009 Phys. Rev. B 80 125327

    [9]

    Prodan E 2010 New J. Phys. 12 065003

    [10]

    Sheng D N, Weng Z Y, Sheng L, Haldane F D M 2006 Phys. Rev. Lett. 97 036808

    [11]

    Yang Y Y, Xu Z, Sheng L, Wang B G, Xing D Y, Sheng D N 2011 Phys. Rev. Lett. 107 066602

    [12]

    Du L J, Knez I, Sullivan G, Du R R 2015 Phys. Rev. Lett. 114 096802

    [13]

    Yao Y G, Ye F, Qi X L, Zhang S C, Fang Z 2007 Phys. Rev. B 75 041401

    [14]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310

    [15]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 195430

    [16]

    Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, Niu Q 2010 Phys. Rev. B 82 161414

    [17]

    Qiao Z, Jiang H, Li X, Yao Y, Niu Q 2012 Phys. Rev. B 85 115439

    [18]

    Zhang Z Y 2011 J. Phys. Condens. Matter 23 365801

    [19]

    Chen M S, Wan S L 2012 J. Phys. Condens. Matter 24 325502

    [20]

    Guo H M, Franz M 2009 Phys. Rev. B 80 113102

    [21]

    Rüegg A, Wen J, Fiete G A 2010 Phys. Rev. B 81 205115

    [22]

    Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H, Yang Z 2016 Phys. Rev. B 94 235449

    [23]

    Kargarian M, Fiete G A 2010 Phys. Rev. B 82 085106

    [24]

    Liu X P, Chen W C, Wang Y F, Gong C D 2013 J. Phys. Condens. Matter 25 305602

    [25]

    Bao A, Tao H S, Liu H D, Zhang X Z, Liu W M 2015 Sci. Rep. 4 6918

    [26]

    Bao A, Zhang X F, Zhang X Z 2015 Chin. Phys. B 24 050310

    [27]

    Zhang L, Wang F 2017 Phys. Rev. Lett. 118 087201

    [28]

    Kang Y T, Yang F, Yao D X 2017 arXiv: 1801.00220. https://arxiv.org/abs/1801.00220

    [29]

    Yang Y, Yang J, Li X, Zhao Y 2018 Phys. Lett. A 382 723

    [30]

    Panahi P S, Struck J, Hauke P, Bick A, Plenkers W, Meineke G, Becker C, Windpassinger P, Lewenstein M, Sengstock K 2011 Nat. Phys. 7 434

    [31]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, StamperKurn D M 2012 Phys. Rev. Lett. 108 045305

    [32]

    He M R, Yu R, Zhu J 2012 Angew. Chem. 124 7864

    [33]

    Fukui T, Hatsugai Y, Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674

    [34]

    Taillefumier M, Dugaev V K, Canals B, Lacroix C, Bruno P 2008 Phys. Rev. B 78 155330

    [35]

    Hatsugai Y 1993 Phys. Rev. B 48 11851

    [36]

    Hatsugai Y 1993 Phys. Rev. Lett. 71 3697

    [37]

    Sun K, Fradkin E 2008 Phys. Rev. B 78 245122

    [38]

    Goldman N, Beugeling W, Smith C M 2012 Europhys. Lett. 97 23003

    [39]

    Beugeling W, Goldman N, Smith C M 2012 Phys. Rev. Lett. 86 075118

    [40]

    Li H C, Sheng L, Shen R, Shao L B, Wang B G, Sheng D N, Xing D Y 2013 Phys. Rev. Lett. 110 266802

    [41]

    Miao M, Yan Q, van de Walle C, Lou W, Li L, Chang K 2012 Phys. Rev. Lett. 109 186803

    [42]

    Zhang D, Lou W, Miao M, Zhang S, Chang K 2013 Phys. Rev. Lett. 111 156402

    [43]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237

    [44]

    Lin Y J, Compton R L, Jiménez-García K, Porto J V, Spielman I B 2009 Nature 462 628

    [45]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

  • [1] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [2] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [3] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220796
    [4] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变. 物理学报, 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [7] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [8] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [9] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [10] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应. 物理学报, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [11] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [12] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应. 物理学报, 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [13] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应. 物理学报, 2017, 66(22): 227803. doi: 10.7498/aps.66.227803
    [14] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [15] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [16] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [17] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展. 物理学报, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [18] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [19] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [20] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
计量
  • 文章访问数:  3674
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-10-02
  • 刊出日期:  2018-12-05

Rashba自旋轨道耦合下square-octagon晶格的拓扑相变

  • 1. 江苏科技大学张家港校区, 张家港 215600;
  • 2. 南京大学, 固体微结构物理国家重点实验室, 南京 210093
    基金项目: 国家自然科学基金(批准号:11647145)、南京大学固体微结构物理国家重点实验室开放课题(批准号:M31024)和江苏省高校自然科学研究项目(批准号:16KJB430012)资助的课题.

摘要: 本文研究了各向同性square-octagon晶格在内禀自旋轨道耦合、Rashba自旋轨道耦合和交换场作用下的拓扑相变,同时引入陈数和自旋陈数对系统进行拓扑分类.系统在自旋轨道耦合和交换场的影响下会出现许多拓扑非平庸态,包括时间反演对称破缺的量子自旋霍尔态和量子反常霍尔态.特别的是,在时间反演对称破缺的量子自旋霍尔效应中,无能隙螺旋边缘态依然能够完好存在.调节交换场或者填充因子的大小会导致系统发生从时间反演对称破缺的量子自旋霍尔态到自旋过滤的量子反常霍尔态的拓扑相变.边缘态能谱和自旋谱的性质与陈数和自旋陈数的拓扑刻画完全一致.这些研究成果为自旋量子操控提供了一个有趣的途径.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回