-
本文研究了不同时间退火后,Fe80Si9B10Cu1非晶合金结构弛豫过程中纳米尺度结构不均匀性的演变及其对合金磁性能的影响。基于小角X射线散射和原子力显微镜分析,随着弛豫的进行,合金的纳米尺度结构不均匀性逐渐衰减。结合穆斯堡尔谱分析结果,弛豫态合金综合软磁性能的提高可归因于纳米尺度结构不均匀性的减弱。从流变单元模型来看,随着弛豫程度的加深,流变单元的体积分数显著降低,部分流变单元湮灭并转化为理想弹性基体。一方面,弛豫态样品的原子结构排列更加紧密,磁交换相互作用更强,饱和磁感应强度也更高。另一方面,准位错偶极子的数量密度也随着流变单元在弛豫过程中的湮灭而逐渐减小,磁畴壁的钉扎效应减弱,合金的磁各向异性下降,矫顽力降低。本文从结构不均匀性的角度研究了Fe80Si9B10Cu1非晶合金弛豫过程中磁性能变化的结构机制,有助于建立铁基非晶合金结构和磁性能之间的关联性。After annealing for various periods of time, the evolution of nanoscale structural heterogeneity and its effect on magnetic properties during structural relaxation are investigated for Fe80Si9B10Cu1 amorphous alloy. The nanoscale structural heterogeneity is found to degenerate gradually with relaxation by using the small-angle X-ray scattering and atomic force microscope. Combined with Mössbauer spectroscopy analysis results, the enhanced comprehensive soft magnetic properties of the relaxed alloys can be attributed to the degeneration of nanoscale structural heterogeneity. From the flow unit model, the volume fraction of flow units decreases with relaxation proceeding, and some of the flow units annihilate and transform to the ideal elastic matrix. On the one hand, the relaxed samples with denser packing density have stronger magnetic exchange interaction and higher saturation magnetic flux intensity. On the other hand, the number density of quasi-dislocation dipoles decreases with the annihilation of flow units in the relaxation process, leading to the weakening of the pinning effect of the domain wall. Consequently, the magnetic anisotropy decreases after relaxation, which results in the reduction of coercivity. In this work, the structural mechanism of the evolution of magnetic properties during the relaxation process of Fe80Si9B10Cu1 amorphous alloy is investigated from the perspective of structural heterogeneity, which is helpful to establish the correlation between the structure and magnetic properties of Fe-based amorphous alloys.
-
[1] Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057
[2] Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379
[3] Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306
[4] Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28
[5] Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419
[6] Guan P F, Wang B, Wu Y C, Zhang S, Shang B-S, Hu Y-C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112
[7] Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388
[8] Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W2011 Phys. Rev. Lett. 106 125504
[9] Sun X, Mo G, Zhao L-Z, Dai L-H, Wu Z-H, Jiang M-Q 2017 Acta Phys. Sin. 66 176109
[10] Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906
[11] Wang Z, Wang W-H 2019 Natl. Sci. Rev. 6 304
[12] Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823
[13] Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965
[14] Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250
[15] Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102
[16] Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187
[17] Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917
[18] Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959
[19] Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang Y G 2021 J. Non-Cryst. Solids 571 121078
[20] Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433
[21] Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067
[22] Liu Y, Pan J, Li L, Cheng H 2019 Applied Physics A 125 297
[23] Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103
[24] Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516
[25] Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323
[26] Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260
[27] Babilas R, Mariola K-G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171
[28] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266-1270
[29] Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.:Condens. Matter 7 4129-4143
[30] Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246
[31] Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130
计量
- 文章访问数: 219
- PDF下载量: 7
- 被引次数: 0