搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响

陈波 杨詹詹 王玉楹 王寅岗

引用本文:
Citation:

退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响

陈波, 杨詹詹, 王玉楹, 王寅岗

Effects of annealing time on nanoscale structural heterogeneity and magnetic properties of Fe80Si9B10Cu1 amorphous alloy

Chen Bo, Yang Zhan-Zhan, Wang Yu-Ying, Wang Yin-Gang
PDF
HTML
导出引用
  • 研究了经历不同时间退火后, Fe80Si9B10Cu1非晶合金结构弛豫过程中纳米尺度结构不均匀性的演变及其对合金磁性能的影响. 基于小角X射线散射和原子力显微镜分析, 随着弛豫的进行, 合金的纳米尺度结构不均匀性逐渐衰减. 结合穆斯堡尔谱分析结果, 弛豫态合金综合软磁性能的提高可归因于纳米尺度结构不均匀性的减弱. 从流变单元模型来看, 随着弛豫程度的加深, 流变单元的体积分数显著降低, 部分流变单元湮灭并转化为理想弹性基体. 一方面, 弛豫态样品的原子结构排列更加紧密, 磁交换相互作用更强, 饱和磁感应强度也更高; 另一方面, 准位错偶极子的数量密度随着流变单元在弛豫过程中的湮灭而逐渐减小, 磁畴壁的钉扎效应减弱, 合金的磁各向异性下降, 矫顽力降低. 本文从结构不均匀性的角度研究了Fe80Si9B10Cu1非晶合金弛豫过程中磁性能变化的结构机制, 有助于建立铁基非晶合金结构和磁性能之间的关联性.
    The evolution of nanoscale structural heterogeneity and its effect on magnetic properties of Fe80Si9B10Cu1 amorphous alloy during structural relaxation after being annealed for different times are investigated in this work. The nanoscale structural heterogeneity is found to degenerate gradually with relaxation by using the small-angle X-ray scattering and atomic force microscope. Combined with Mössbauer spectroscopy analysis results, the enhanced comprehensive soft magnetic properties of the relaxed alloys can be attributed to the degeneration of nanoscale structural heterogeneity. From the flow unit model, the volume fraction of flow units decreases with relaxation proceeding, and some of the flow units annihilate and transform into the ideal elastic matrix. On the one hand, the relaxed sample with greater packing density has stronger magnetic exchange interaction and higher saturation magnetic flux intensity. On the other hand, the number density of quasi-dislocation dipoles decreases with the annihilation of flow units in the relaxation process, leading the pinning effect of the domain wall to be weakened. Consequently, the magnetic anisotropy decreases after relaxation, which results in the reduction of coercivity. In this work, the structural mechanism of the evolution of magnetic properties in the relaxation process of Fe80Si9B10Cu1 amorphous alloy is investigated from the perspective of structural heterogeneity, which is helpful in establishing the correlation between the structure and magnetic properties of Fe-based amorphous alloys.
      通信作者: 陈波, chenbo@jsyddq.cn ; 王寅岗, yingang.wang@nuaa.edu.cn
      Corresponding author: Chen Bo, chenbo@jsyddq.cn ; Wang Yin-Gang, yingang.wang@nuaa.edu.cn
    [1]

    Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057Google Scholar

    [2]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [3]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306Google Scholar

    [4]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28Google Scholar

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [6]

    管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 物理学报 66 176112Google Scholar

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112Google Scholar

    [7]

    Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388Google Scholar

    [8]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [9]

    孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 物理学报 66 176109Google Scholar

    Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109Google Scholar

    [10]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [11]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [12]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar

    [13]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [14]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [15]

    Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102Google Scholar

    [16]

    Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187Google Scholar

    [17]

    Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917Google Scholar

    [18]

    Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959Google Scholar

    [19]

    Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang Y G 2021 J. Non-Cryst. Solids 571 121078Google Scholar

    [20]

    Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433Google Scholar

    [21]

    Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067Google Scholar

    [22]

    Liu Y, Pan J, Li L, Cheng H 2019 Appl. Phys. A: Mater. Sci. Proc. 125 297Google Scholar

    [23]

    Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103Google Scholar

    [24]

    Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [25]

    Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323Google Scholar

    [26]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [27]

    Babilas R, Mariola K G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171Google Scholar

    [28]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266Google Scholar

    [29]

    Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.: Condens. Matter 7 4129Google Scholar

    [30]

    Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246Google Scholar

    [31]

    Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130Google Scholar

  • 图 1  淬态与不同弛豫态Fe80Si9B10Cu1合金的 (a) XRD图谱及 (b) DSC曲线

    Fig. 1.  (a) XRD and (b) DSC curves of the as-quenched and different relaxed Fe80Si9B10Cu1 alloys.

    图 2  (a)淬态和(b)高度弛豫态Fe80Si9B10Cu1合金的HRTEM图像及相应SAED花样(插图)

    Fig. 2.  HRTEM images and corresponding SAED patterns (inset) of (a) as-quenched and (b) highly-relaxed Fe80Si9B10Cu1 alloys.

    图 3  (a) 淬态和不同弛豫态Fe80Si9B10Cu1合金的SAXS曲线; (b) Porod定律与 (c) Guinier定律分析样品的散射曲线; (d) 线性拟合小q区域的散射曲线所得到的回转半径Rg

    Fig. 3.  (a) SAXS profiles of the as-quenched and relaxed Fe80Si9B10Cu1 alloys; the analysis results of (b) Porod’s law and (c) Guinier’s law of scattering curves for all specimens; (d) the average radius of gyration Rg obtained by linearly fitting scattering curves for small q regions.

    图 4  Fe80Si9B10Cu1合金的相位移图像 (a) 淬态; (b) 轻度弛豫; (c) 中度弛豫; (d) 高度弛豫态

    Fig. 4.  Phase shift images of Fe80Si9B10Cu1 alloys: (a) As-quenched; (b) slightly-relaxed; (c) intermediate-relaxed; (d) highly-relaxed.

    图 5  淬态和不同弛豫态Fe80Si9B10Cu1合金的关联函数拟合曲线(插图为所有样品相位移角的统计分布及高斯函数拟合)

    Fig. 5.  Correlation function curves of the as-quenched and different relaxed Fe80Si9B10Cu1 alloys (Inset: the statistic distribution of phase shift angles and Gauss function fitting for all specimens).

    图 6  (a) 淬态与不同弛豫态Fe80Si9B10Cu1合金的室温穆斯堡尔谱; (b) 从穆斯堡尔谱中提取出的超精细场分布; (c) 淬态和不同弛豫态样品的B-H回线; (d) 饱和磁感应强度Bs、平均超精细场Bhfa、强度比A23以及矫顽力Hc随关联长度的变化

    Fig. 6.  (a) Room-temperature Mössbauer spectra of as-quenched and different relaxed Fe80Si9B10Cu1 alloys; (b) the hyperfine magnetic-field distributions extracted from these spectra; (c) B-H curves of as-quenched and different relaxed samples; (d) saturated magnetic flux density Bs, average hyperfine field Bhfa, intensity ratio A23, and coercivity Hc as functions of the correlation length.

    图 7  Fe80Si9B10Cu1非晶合金退火诱导的结构弛豫过程中的能量地形图及结构不均匀性演化示意图

    Fig. 7.  Schematic illustrations of the potential energy landscape and the evolution of structural heterogeneity in Fe80Si9B10Cu1 amorphous alloys during structural relaxation induced by annealing.

    表 1  穆斯堡尔谱超精细参数

    Table 1.  Hyperfine parameters of the Mössbauer spectra

    SamplesBhfa/TIS/
    (mm·s–1)
    DTI/
    (mm·s–1)
    QS/
    (mm·s–1)
    As-quenched24.87–0.0540.0062–0.014
    3 min25.46–0.0750.0053–0.023
    5 min25.63–0.0660.0066–0.018
    8 min25.85–0.0960.0076–0.019
    下载: 导出CSV
  • [1]

    Jiang H Y, Shang T T, Xian H J, Sun B, Zhang Q, Yu Q, Bai H, Gu L, Wang W 2020 Small Struct. 2 2000057Google Scholar

    [2]

    Cheng Y Q, Ma E 2011 Prog. Mater. Sci. 56 379Google Scholar

    [3]

    Chen D Z, Shi C Y, An Q, Zeng Q, Mao W L, Goddard W A, III G, Greer J R 2015 Science 349 1306Google Scholar

    [4]

    Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T, Chen M 2011 Nat. Mater. 10 28Google Scholar

    [5]

    Sheng H W, Luo W K, Alamgir F M, Bai J M, Ma E 2006 Nature 439 419Google Scholar

    [6]

    管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪 2017 物理学报 66 176112Google Scholar

    Guan P F, Wang B, Wu Y C, Zhang S, Shang B S, Hu Y C, Su R, Liu Q 2017 Acta Phys. Sin. 66 176112Google Scholar

    [7]

    Liu C Y, Maaß R 2018 Adv. Funct. Mater. 28 1800388Google Scholar

    [8]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [9]

    孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强 2017 物理学报 66 176109Google Scholar

    Sun X, Mo G, Zhao L Z, Dai L H, Wu Z H, Jiang M Q 2017 Acta Phys. Sin. 66 176109Google Scholar

    [10]

    Wang Z, Wen P, Huo L S, Bai H Y, Wang W H 2012 Appl. Phys. Lett. 101 121906Google Scholar

    [11]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [12]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar

    [13]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [14]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [15]

    Bitoh T, Makino A, Inoue A 2006 J. Appl. Phys. 99 08F102Google Scholar

    [16]

    Lu Z, Chen X, Liu X, Lin D, Wu Y, Zhang Y, Wang H, Jiang S, Li H, Wang X, Lu Z 2020 npj Comput. Mater. 6 187Google Scholar

    [17]

    Zhao C C, Inoue A, Kong F L, Zhang J Y, Chen C J, Shen B L, Al-Marzouki F, Greer A L 2020 J. Alloy. Compd. 843 155917Google Scholar

    [18]

    Fan Y, Zhang S, Miao J, Zhang X, Chen C, Zhang W, Wei R, Wang T, Li F 2020 Intermetallics 127 106959Google Scholar

    [19]

    Yang Z Z, Zhu L, Ye L X, Gao X, Jiang S S, Yang H, Wang Y G 2021 J. Non-Cryst. Solids 571 121078Google Scholar

    [20]

    Yang Z Z, Jiang S S, Ye L X, Zhu C, Gao X, Yang H, Wang Y G 2022 J. Non-Cryst. Solids 581 121433Google Scholar

    [21]

    Yang Z Z, Zhu L, Jiang S S, Zhu C, Xu Q H, Lin Y, Chen F G, Wang Y G 2022 J. Alloy. Compd. 904 164067Google Scholar

    [22]

    Liu Y, Pan J, Li L, Cheng H 2019 Appl. Phys. A: Mater. Sci. Proc. 125 297Google Scholar

    [23]

    Garcia R, Gomez C J, Martinez N F, Patil S, Dietz C, Magerle R 2006 Phys. Rev. Lett. 97 016103Google Scholar

    [24]

    Zhu F, Nguyen H K, Song S X, Aji D P, Hirata A, Wang H, Nakajima K, Chen M W 2016 Nat. Commun. 7 11516Google Scholar

    [25]

    Karabacak T, Zhao Y P, Wang G C, Lu T M 2001 Phys. Rev. B 64 085323Google Scholar

    [26]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [27]

    Babilas R, Mariola K G, Burian A, Temleitner L 2016 J. Magn. Magn. Mater. 406 171Google Scholar

    [28]

    Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S, Lou H B 2017 J. Alloy. Compd. 695 1266Google Scholar

    [29]

    Pradell T, Clavaguera N, Zhu J, Clavagueramora M T 1995 J. Phys.: Condens. Matter 7 4129Google Scholar

    [30]

    Blazquez J S, Lozano-Perez S, Conde A 2000 Mater. Lett. 45 246Google Scholar

    [31]

    Gallagher K A, Willard M A, Zabenkin V N, Laughlin D E, McHenry M E 1999 J. Appl. Phys. 85 5130Google Scholar

  • [1] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性. 物理学报, 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [2] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [3] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华. 非晶材料与物理近期研究进展. 物理学报, 2018, 67(12): 126101. doi: 10.7498/aps.67.20180681
    [4] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀. 物理学报, 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [5] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展. 物理学报, 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [6] 曹成成, 范珏雯, 朱力, 孟洋, 王寅岗. 预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响. 物理学报, 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [7] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [8] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [9] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [12] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [13] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [14] 向军, 宋福展, 沈湘黔, 褚艳秋. 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报, 2010, 59(7): 4794-4801. doi: 10.7498/aps.59.4794
    [15] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [16] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [17] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [18] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [19] 柳 义, 吴志方, 柳 林, 张 涛. 块体非晶合金Zr55Cu30Al10Ni5 结构弛豫的研究. 物理学报, 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [20] 柳 义, 柳 林, 王 俊, 赵 辉, 荣利霞, 董宝中. 用原位x射线小角散射研究块体非晶合金Zr55Cu30Al10 Ni5的结构弛豫. 物理学报, 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
计量
  • 文章访问数:  3096
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-12
  • 修回日期:  2022-04-07
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回