搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双孤子非线性干涉中的狄拉克磁单极势

孙斌 赵立臣 刘杰

引用本文:
Citation:

双孤子非线性干涉中的狄拉克磁单极势

孙斌, 赵立臣, 刘杰

Dirac magnetic monopoles potential in the nonlinear double-soliton interference

Sun Bin, Zhao Li-Chen, Liu Jie
PDF
HTML
导出引用
  • 本文深入研究了孤子干涉过程中的相位演化特性及其背后的拓扑矢势. 基于一维非线性薛定谔方程的双孤子解, 发现波函数密度零点广泛存在于拓展的复平面内, 并且每一个密度零点对应狄拉克磁单极的矢势场. 矢势场是由周期排布的具有相反磁荷的狄拉克磁单极对组成. 通过观察磁单极子的运动, 可以方便地理解干涉过程中的相位演化特征. 特别发现, 一对正负磁单极对在实轴上的碰撞恰好对应波函数相位在节点处的π跃变. 此外,还对比讨论了线性波包干涉动力学中的狄拉克磁单极. 结果表明狄拉克磁单极势广泛存在于波场的干涉现象之中, 并且磁单极在拓展的复平面内分布特征可用于区分线性干涉和非线性干涉过程背后的拓扑性质.
    In this paper, we deeply investigate the phase evolution and the underlying topological vector potential in the nonlinear interference of solitons. Based on the double-soliton solution of 1D nonlinear Schrödinger equation, we find that the density zeros of wave function generally exist in the extended complex space, each density zero corresponds to the vector potential produced by Dirac magnetic monopole. The vector potential field is composed of periodically distributed Dirac magnetic monopole pairs with opposite magnetic charges. By observing the motion of magnetic monopoles, we can conveniently understand the phase evolution characteristics during the interference process. In particular, we find that the collision of a pair of magnetic monopoles with opposite charge on the real axis corresponds exactly to the $ \pm\pi $ jump of the wave function phase at nodes. For comparison, we also discuss Dirac magnetic monopoles and vector potential field in linear wave packet interference case. The results show that the Dirac magnetic monopole potential widely exists in the interference phenomena of wave fields, and the distribution of magnetic monopoles in the extended complex space can be used to distinguish the topological properties behind the linear and nonlinear interference process.
      通信作者: 刘杰, jliu@gscaep.ac.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1930403)和国家自然科学基金(批准号: 12022513) 资助的课题
      Corresponding author: Liu Jie, jliu@gscaep.ac.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1930403) and the National Natural Science Foundation of China (Grant No. 12022513)
    [1]

    Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [2]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [3]

    Yang C N 1970 Phys. Rev. D 1 2360Google Scholar

    [4]

    Wu T T, Yang C N 1995 Phys. Rev. D 12 3845Google Scholar

    [5]

    Berry M V 1980 Eur. J. Phys. 1 240Google Scholar

    [6]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [7]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45Google Scholar

    [8]

    Hooft G 1974 Nucl. Phys. B 79 276Google Scholar

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [11]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [12]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [13]

    Zhao L C, Qin Y H, Lee C, Liu J 2021 Phys. Rev. E 10 3Google Scholar

    [14]

    Muga J G, Ruschhaupt A, Campo A 2009 Time in Quantum Mechanics (Vol. 2) (Berlin, Heidelberg: Springer Berlin Heidelberg) p305

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [16]

    Barenblatt G I 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge: Cambridge University Press)

    [17]

    Karpman V I 1975 Non-Linear Waves in Dispersive Media (New York: Pergamon Press)

    [18]

    Agrawal G 2006 Nonlinear Fiber Optics (Cambridge: Academic Press)

    [19]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101Google Scholar

    [20]

    Rebbi C, Soliani G 1984 Solitons and Particles (Singapore: World Scientific Publishing)

    [21]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [22]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [23]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [24]

    Yang C N, Lee T D 1952 Phys. Rev. 87 404Google Scholar

    [25]

    Zhao L C, Meng L Z, Qin Y H, Yang Z Y, Liu J 2021 arXiv: 2102.10914.

    [26]

    王竹溪, 郭敦仁 2012 特殊函数概论 (北京: 北京大学出版社) 第15页

    Wang Z X, Guo D R 2012 Special Functions (Beijing: Peking University Press) p15 (in Chinese)

    [27]

    梁九卿, 韦联福 2011 量子力学新进展 (北京: 科学出版社) 第26页

    Liang J Q, Wei L F 2011 New Developments in Quantum Mechanics (Beijing: Science Press) p26 (in Chinese)

    [28]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348Google Scholar

    [29]

    Triki H, Hamaizi Y, Zhou Q, Biswas A, Ullah M Z, Moshokoa S P, Belic M 2018 Optik 155 329Google Scholar

    [30]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [31]

    Alejo M A, Corcho A J 2020 arXiv: 2003.09994

    [32]

    Li J D, Meng L Z, Zhao L C 2023 Phys. Rev. A 107 013511Google Scholar

  • 图 1  坐标空间中高斯波包线性干涉图样 (a)$ xz $空间两个波包干涉随时间演化; (b)波包中心($ z = 0 $) 处波函数密度对时间演化.宽度为a、振幅为S, $ t = 0 $时刻位于$ (0, 0) $处具有相反x方向动量$\pm k\hat{{\boldsymbol{e}}}_x$的高斯波包. 实际参数$S = a = 1, k = 5 $

    Fig. 1.  Linear interference of two Gaussian wave packets in position space: (a) Time evolution of Gaussian wave packet interference in $ xz $-space; (b) density plot of wave packet center($ z = 0 $) vs. time t. The wave packets of width a and amplitude S start at $ (0, 0) $ with opposite momentum $\pm k\hat{{\boldsymbol{e}}}_x$ in x-direction. The actual parameters are $S = a = 1, k = 5 $.

    图 2  坐标空间中孤子非线性干涉图样 (a)$ xz $ 空间两个孤子干涉随时间演化; (b)孤子中心($ z = 0 $) 处波函数密度对时间演化. 两个具有相反方向速度$ b_1, b_2 $的完全相同的孤子. 实际参数为$ a_1 = 1, b_1 = 5, g = 1, a_2 = 1, b_2 = -5, c_1 = d_1 = c_2 = d_2 = 0 $, 及$ S= 1, a = 1 $

    Fig. 2.  Nonlinear Interference of two solitons in position space: (a) Time evolution of soliton interference in $ xz $-space; (b) density plot of soliton center ($ z = 0 $) vs. time t. Two identical solitons with opposite velocity $ b_1, b_2 $. The actual parameters are $ a_1 = 1, b_1 = 5, g = 1, a_2 = 1, b_2 = -5, c_1 = d_1 = c_2 = d_2 = 0 $, and $ S = 1, a = 1 $.

    图 3  $ t = 0.2 $时刻波函数相对相位导数$ \text{d}\phi/\text{d}x $重构、磁单极分布及产生的矢势A (a) $ t = 0.2 $时刻, 波函数相对相位导数$ \text{d}\phi/\text{d}x $解析解与利用磁单极重构解, 黑色实线为解析解, 红色虚线为磁单极重构解; (b)$ t = 0.2 $时刻复平面上磁单极分布及对应的矢势A, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$的两类磁单极, $ \text{Re}[z], \text{Im}[z] $分别表示实部虚部. 实际参数同图1

    Fig. 3.  Derivative of relative phase function $ \text{d}\phi/\text{d}x $, Dirac magnetic monopole distribution and corresponding vector potential A at time $ t = 0.2 $: (a) Analytic solution and reconstruction using magnetic monopoles of phase function derivative $ \text{d}\phi/\text{d}x $ at time $ t = 0.2 $, analytic solution(black solid line), construct using magnetic monopole(red dash line); (b) magnetic monopole distribution and corresponding vector potential A on complex plane at time $ t = 0.2 $, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[z], \text{Im}[z] $ real part, imaginary part respectively. The actual parameters are same as Fig. 1.

    图 4  复平面上磁单极分布及相应矢势A随时间演化, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$ 的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图1

    Fig. 4.  Time evolution of Magnetic monopole distribution and corresponding vector potential A on complex plane, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 1.

    图 5  $ t = 0.05 $时刻波函数相对相位导数$ \text{d}\phi/\text{d}x $重构、磁单极分布及产生的矢势A (a)$ t = 0.2 $时刻, 波函数相对相位导数$ \text{d}\phi/\text{d}x $解析解与利用磁单极重构解, 黑色实线为解析解, 红色虚线为磁单极重构解; (b)$ t = 0.2 $时刻复平面上磁单极分布及对应的矢势A, $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图2

    Fig. 5.  Derivative of relative phase function $ \text{d}\phi/\text{d}x $, Dirac magnetic monopole distribution and corresponding vector potential A at time $ t = 0.05 $: (a) Analytic solution and reconstruction using magnetic monopoles of phase function derivative $ \text{d}\phi/\text{d}x $at time $ t = 0.2 $, analytic solution(black solid line), construct using magnetic monopole(red dash line); (b) magnetic monopole distribution and corresponding vector potential A on complex plane at time $ t = 0.2 $, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 2.

    图 6  复平面上磁单极分布及相应矢势A随时间演化. $ \odot, \otimes $分别表示$\mu=\pm\dfrac{1}{2}$ 的两类磁单极, $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ 分别表示实部虚部. 实际参数同图2

    Fig. 6.  Time evolution of magnetic monopole distribution and corresponding vector potential A on complex plane, $ \odot, \otimes $ denotes monopoles with $\mu=\pm\dfrac{1}{2}$ and $ \text{Re}[{\cal{Z}}], \text{Im}[{\cal{Z}}] $ real part, imaginary part respectively. The actual parameters are same as Fig. 2.

    图 7  完全碰撞时刻波函数相位$ \pm\pi $ 跃变与密度零点 (a)高斯波包线性干涉$ t = 0 $时刻波函数相位与密度零点; (b)双孤子非线性干涉$ t = 0 $时刻波函数相位与密度零点. 线性干涉与非线性干涉情形实际参数分别同图1图2

    Fig. 7.  $ \pm\pi $ jump of phase function and zeros of density at complete collision time ($ t = 0 $): (a) Phase jump and density zeros of Gaussian wave packet linear interference at time $ t = 0 $; (b) phase jump and density zeros of double soliton nonlinear interference at time $ t = 0 $. The actual parameters for linear and nonlinear case are same as Fig. 1 and Fig. 2, respectively.

  • [1]

    Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60Google Scholar

    [2]

    Milton K A 2006 Rep. Prog. Phys. 69 1637Google Scholar

    [3]

    Yang C N 1970 Phys. Rev. D 1 2360Google Scholar

    [4]

    Wu T T, Yang C N 1995 Phys. Rev. D 12 3845Google Scholar

    [5]

    Berry M V 1980 Eur. J. Phys. 1 240Google Scholar

    [6]

    Aharonov Y, Bohm D 1959 Phys. Rev. 115 485Google Scholar

    [7]

    Berry M V 1984 Proc. R. Soc. Lond. A 392 45Google Scholar

    [8]

    Hooft G 1974 Nucl. Phys. B 79 276Google Scholar

    [9]

    Castelnovo C, Moessner R, Sondhi S L 2008 Nature 451 42Google Scholar

    [10]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S, Schütte C, Rosch A 2013 Science 340 1076Google Scholar

    [11]

    Ray M W, Ruokokoski E, Kandel S, Möttönen M, Hall D S 2014 Nature 505 657Google Scholar

    [12]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [13]

    Zhao L C, Qin Y H, Lee C, Liu J 2021 Phys. Rev. E 10 3Google Scholar

    [14]

    Muga J G, Ruschhaupt A, Campo A 2009 Time in Quantum Mechanics (Vol. 2) (Berlin, Heidelberg: Springer Berlin Heidelberg) p305

    [15]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [16]

    Barenblatt G I 1996 Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (Cambridge: Cambridge University Press)

    [17]

    Karpman V I 1975 Non-Linear Waves in Dispersive Media (New York: Pergamon Press)

    [18]

    Agrawal G 2006 Nonlinear Fiber Optics (Cambridge: Academic Press)

    [19]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101Google Scholar

    [20]

    Rebbi C, Soliani G 1984 Solitons and Particles (Singapore: World Scientific Publishing)

    [21]

    Nguyen J H V, Dyke P, Luo D, Malomed B A, Hulet R G 2014 Nat. Phys. 10 918Google Scholar

    [22]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [23]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [24]

    Yang C N, Lee T D 1952 Phys. Rev. 87 404Google Scholar

    [25]

    Zhao L C, Meng L Z, Qin Y H, Yang Z Y, Liu J 2021 arXiv: 2102.10914.

    [26]

    王竹溪, 郭敦仁 2012 特殊函数概论 (北京: 北京大学出版社) 第15页

    Wang Z X, Guo D R 2012 Special Functions (Beijing: Peking University Press) p15 (in Chinese)

    [27]

    梁九卿, 韦联福 2011 量子力学新进展 (北京: 科学出版社) 第26页

    Liang J Q, Wei L F 2011 New Developments in Quantum Mechanics (Beijing: Science Press) p26 (in Chinese)

    [28]

    Kivshar Y S, Afansjev V V, Snyder A W 1996 Opt. Commun. 126 348Google Scholar

    [29]

    Triki H, Hamaizi Y, Zhou Q, Biswas A, Ullah M Z, Moshokoa S P, Belic M 2018 Optik 155 329Google Scholar

    [30]

    Busch T, Anglin J R 2001 Phys. Rev. Lett. 87 010401Google Scholar

    [31]

    Alejo M A, Corcho A J 2020 arXiv: 2003.09994

    [32]

    Li J D, Meng L Z, Zhao L C 2023 Phys. Rev. A 107 013511Google Scholar

  • [1] 焦婧, 罗焕波, 李禄. 由正负磁单极对相互作用诱导的孤立狄拉克弦. 物理学报, 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [2] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [3] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [5] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [6] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究. 物理学报, 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [7] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [8] 林万涛, 陈丽华, 欧阳成, 莫嘉琪. 厄尔尼诺/拉尼娜-南方涛动非线性扰动模型孤子的渐近解法. 物理学报, 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [9] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [10] 花巍, 刘学深. 立方五次方非线性Schrodinger方程的动力学性质研究. 物理学报, 2011, 60(11): 110210. doi: 10.7498/aps.60.110210
    [11] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [12] 石兰芳, 周先春. 一类扰动Burgers方程的孤子同伦映射解. 物理学报, 2010, 59(5): 2915-2918. doi: 10.7498/aps.59.2915
    [13] 石兰芳, 莫嘉琪. 一类扰动非线性发展方程的类孤子同伦近似解析解. 物理学报, 2009, 58(12): 8123-8126. doi: 10.7498/aps.58.8123
    [14] 徐志君, 王冬梅, 李 珍. 一维光晶格中玻色凝聚气体的干涉. 物理学报, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [15] 姚志欣, 钟建伟, 毛邦宁, 陈 钢, 潘佰良. 双孔干涉效应的量子描述. 物理学报, 2007, 56(6): 3185-3191. doi: 10.7498/aps.56.3185
    [16] 莫嘉琪, 张伟江, 何 铭. 非线性广义Landau-Ginzburg-Higgs方程孤子解的变分迭代解法. 物理学报, 2007, 56(4): 1847-1850. doi: 10.7498/aps.56.1847
    [17] 翁紫梅, 陈 浩. 单离子各向异性影响下的一维铁磁链中的孤子. 物理学报, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [18] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
    [19] 徐 岩, 薛德胜, 左 维, 李发伸. 非均匀交换各向异性铁磁介质的非线性表面自旋波. 物理学报, 2003, 52(11): 2896-2900. doi: 10.7498/aps.52.2896
    [20] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
计量
  • 文章访问数:  2019
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-20
  • 修回日期:  2023-01-31
  • 上网日期:  2023-02-28
  • 刊出日期:  2023-05-20

/

返回文章
返回