搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二阶共鸣器单元的宽频消声器研究与设计

施全权 杨玉真 赵准 安秉文 田朋溢 蒋成成 邓科 贾晗 杨军

引用本文:
Citation:

基于二阶共鸣器单元的宽频消声器研究与设计

施全权, 杨玉真, 赵准, 安秉文, 田朋溢, 蒋成成, 邓科, 贾晗, 杨军

Research and design of broadband muffler based on second-order Helmholtz resonators

Shi Quan-Quan, Yang Yu-Zhen, Zhao Zhun, An Bing-Wen, Tian Peng-Yi, Jiang Cheng-Cheng, Deng Ke, Jia Han, Yang Jun
PDF
HTML
导出引用
  • 近年来, 声学人工结构逐渐成为降噪领域的研究热点, 亥姆霍兹共鸣器是其中的重要结构单元之一. 本研究旨在设计基于内插管式二阶亥姆霍兹共鸣器单元的宽频消声器. 传统亥姆霍兹共鸣器仅具有单一共振峰, 为了减少单元个数、降低消声器长度, 选取了具有两个共振峰的二阶亥姆霍兹共鸣器单元作为基本结构. 通过理论计算、仿真计算和实验测试对二阶共鸣器单元的隔声性能进行分析, 并在此基础上构建了宽频抗性消声器. 针对所设计的宽频消声器, 理论计算、仿真计算和实验测试的数据结果获得了良好的一致性: 在267—929 Hz的频率范围内实现了20 dB以上的传递损失. 该消声器结构简单、实用性高, 在噪声控制工程中具有广泛的应用前景.
    Noise is always a serious factor affecting people's quality of life. The most common sound-absorbing materials are porous materials, which work based on the principle that sound waves entering into the pores inside the material are subjected to air friction and viscous resistance, thus converting sound energy into heat. Porous materials have excellent performance of absorbing medium-frequency and high-frequency sound , but they are required to be thick enough to control the low-frequency sound waves with large wavelengths, which limits the application of porous materials in low-frequency noise control. In recent years, acoustic artificial structures have become a research hotspot, which can realize exotic effective acoustic parameters based on periodical structure or local resonance. Acoustic artificial structure provides a new material basis for noise control, in which Helmholtz resonator plays an important role because of its simple geometry. In this study, a broadband muffler is designed based on the second-order neck embedded Helmholtz resonator. In order to achieve low-frequency and broadband sound insulation with a limited number of units and structure length, the second-order resonator is chosen as a basic structure unit, which has a stronger low-frequency noise reduction capability and has one high-frequency transmission loss peak more than a conventional Helmholtz resonator. The acoustic characteristics and insulation performance of second-order resonators are analyzed through theoretical calculation, simulation calculation and experimental test. Then, based on the theoretical model and empirical rules, a broadband muffler composed of nine second-order resonators is designed by carefully adjusting the geometry parameters of each resonator. The three-dimensional printed resonators are installed on the side wall of a square standing wave tube for experimental measurement. In the experiment, the transmission loss curve of the muffler is measured by the two-load method. The result shows that the designed muffler has good sound insulation performances in a frequency range of 267–927 Hz, with the whole transmission loss above 20 dB and the maximum sound insulation up to 60 dB. The experimental result is consistent with the calculation result and simulation result. The muffler has simple structure and high practicability, which will have a wide application prospect in noise control engineering.
      通信作者: 杨玉真, yangyuzhen@mail.ioa.ac.cn ; 邓科, dengke@jsu.edu.cn
    • 基金项目: 中国国家铁路集团有限公司科技研发开发计划(批准号: P2021J035)资助的课题.
      Corresponding author: Yang Yu-Zhen, yangyuzhen@mail.ioa.ac.cn ; Deng Ke, dengke@jsu.edu.cn
    • Funds: Project supported by the Science and Technology Research and Development Program of China National Railway Group Co. LTD (Grant No. P2021J035).
    [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Allard J, Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2nd Ed.) (Hoboken: John Wiley & Sons) p15

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Yang Z, Dai H M, Chan N H, Ma G C, Sheng P 2010 Appl. Phys. Lett. 96 041906Google Scholar

    [5]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [6]

    Soto G, Castro A, Vechiatti N, Lasi F, Armas A, Marcovich N E, Mosiewicki M A 2017 Polym. Test. 57 42Google Scholar

    [7]

    Cai X B, Guo Q Q, Hu G K, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [8]

    Chen C R, Du Z B, Hu G K, Yang J 2017 Appl. Phys. Lett. 110 221903Google Scholar

    [9]

    刘志恩, 吴旭昌, 杜松泽, 黄涛, 卢炽华, 阮杰, 邵炯炀, 刘国强 2019 数字制造科学 6 143

    Liu Z E, Wu X C, Du S Z, Huang T, Lu Z H, Ruan J, Shao J Y, Liu G Q 2019 Digit. Manu. Sci. 6 143

    [10]

    Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 083504Google Scholar

    [11]

    Gu Y, Long H Y, Cheng Y, Deng M X, Liu X J 2021 Phys. Rev. Appl. 16 014021Google Scholar

    [12]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [13]

    Sun M, Fang X S, Mao D X, Wang X, Li Y 2020 Phys. Rev. Appl. 13 044028Google Scholar

    [14]

    Shao C, Xiong W, Long H Y, Tao J C, Cheng Y, Liu X J 2021 J. Acoust. Soc. Am. 150 1044Google Scholar

    [15]

    Dong R Z, Mao D X, Wang X, Li Y 2021 Phys. Rev. Appl. 15 024044Google Scholar

    [16]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [17]

    Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H, Assouar B 2021 Phys. Rev. Appl. 16 064057Google Scholar

    [18]

    Gao Y X, Cheng Y, Liang B, Li Y, Yang J, Cheng J C 2021 Sci. China-Phys. Mech. Astron. 64 1

    [19]

    Liu C K, Wang H J, Liang B, Cheng J C, Lai Y 2022 Appl. Phys. Lett. 120 231702Google Scholar

    [20]

    Yu Y C, Yang Y Z, Zhao H, Shi Q Q, Kong P, Yang J, Deng K 2022 J. Appl. Phys. 131 135102Google Scholar

    [21]

    Zhu Y Z, Long H Y, Liu C, Zhang H X, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 141701Google Scholar

    [22]

    Selamet A, Lee I 2003 J. Acoust. Soc. Am. 113 1975Google Scholar

    [23]

    Ji J, Li D T, Li Y, Jing Y 2020 Front. Mech. Eng-Switz. 6 94

    [24]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [25]

    Romero-Garc V, Theocharis G, Richoux O, Pagneux V 2016 J. Acoust. Soc. Am. 139 3395Google Scholar

    [26]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [27]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [28]

    Ryoo H, Jeon W 2018 Appl. Phys. Lett. 113 121903Google Scholar

    [29]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [30]

    Liu C R, Wu J H, Ma F Y, Chen X, Yang Z R 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [31]

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhou J, Li Y 2020 Sci. Bull. 65 373Google Scholar

    [32]

    Jiménez N, Groby J P, Romero-García V 2021 Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media (Cham: Springer International Publishing) p103

    [33]

    康钟绪 2009 博士学位论文 (太原: 山西大学)

    Kang Z X 2009 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [34]

    龙厚友 2019 博士学位论文 (南京: 南京大学)

    Long H Y 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

  • 图 1  (a)二阶共鸣器的三维截面示意图; (b)二维结构示意图及几何参数

    Fig. 1.  (a) 3D cross-sectional schematic diagram of second-order resonator; (b) 2D structure schematic diagram and geometrical parameters.

    图 2  二阶共鸣器单元在波导管侧壁作为消声器的三维仿真示意图(a)和实验测量示意图(b); 1号(c)和2号(d)二阶共鸣器单元的数值计算、仿真计算与实验测量的传递损失结果对比数据图

    Fig. 2.  3D simulation schematic diagram (a) and experimental test diagram (b) of the second-order resonator as a muffler on the side of a waveguide; transmission loss results of the numerical calculation, simulation calculation and experimental measurement of No. 1 (c) and No. 2 (d) second-order resonators, respectively.

    图 3  (a) 传统共鸣器; (b) 二阶共鸣器; (c) 仿真计算的传递损失结果对比图

    Fig. 3.  (a) Schematic diagram of traditional resonator; (b) schematic diagram of second-order resonator; (c) transmission loss results of structures corresponding to (a), (b).

    图 4  (a)—(c) 表3中不同腔体深度分布的二阶共鸣器单元结构示意图; (d) 仿真计算的3个二阶共鸣器单元传递损失结果对比图

    Fig. 4.  (a)–(c) Schematics of second-order resonators with different cavity depths shown in Table 3; (d) transmission loss results of structures corresponding to Fig. 4(a), (b) and (c).

    图 5  (a) 不同第一内插管半径$ {r}_{\rm{n}}^{1} $的传输损失曲线; (b) 不同第一内插管长度$ {l}_{\rm{n}}^{1} $的传输损失曲线; (c) 不同第二内插管半径$ {r}_{\rm{n}}^{2} $的传输损失曲线; (d) 不同第二内插管长度$ {l}_{\rm{n}}^{2} $的传输损失曲线

    Fig. 5.  (a) Transmission loss curves of different $ {r}_{\rm{n}}^{1} $; (b) transmission loss curves of different $ {l}_{\rm{n}}^{1} $; (c) transmission loss curves of different $ {r}_{\rm{n}}^{2} $; (d) transmission loss curves of different $ {l}_{\rm{n}}^{2} $.

    图 6  (a)由9个二阶共鸣器单元组成的抗性消声器仿真模型; (b) 实验测试图; (c) 实验测量与Comsol Multiphysics仿真、Matlab计算结果的传递损失对比图

    Fig. 6.  (a) The simulation model of the resistant muffler composed of nine second-order resonators; (b) experimental measurement photo; (c) transmission loss curves of experimental measurement, simulation with Comsol Multiphysics and calculation with Matlab.

    表 1  两个二阶共鸣器单元的几何参数表

    Table 1.  Geometrical parameters of two 2nd-order resonators.

    NO.$ {S}_{\rm{c}} $/mm2$ {l}_{\rm{n}}^{1} $, $ {l}_{\rm{n}}^{2} $/mm$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {r}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{2} $/mm
    1100×1001070304020
    2115×10010703042.520
    下载: 导出CSV

    表 2  图3(a), (b)中三维结构的几何参数及共振峰结果表

    Table 2.  Geometrical parameters and resonance peak results of the structures in Fig. 3(a), (b).

    类型$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {l}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{1} $/mm$ {l}_{\rm{n}}^{2} $/mm$ {r}_{\rm{n}}^{2} $/mm$ {f}_{1} $/Hz$ {f}_{2} $/Hz$ {\rm{T}\rm{L}}_{f1} $/dB$ {\rm{T}\rm{L}}_{f2} $/dB
    一阶100202029929.4
    二阶50502020201020150029.337.1
    下载: 导出CSV

    表 3  图4(a)(c)中三维结构的几何参数及共振峰结果表

    Table 3.  Geometrical parameters and resonance peak results of the structures in Fig. 4(a)-(c).

    No.$ {l}_{\rm{c}}^{1} $/mm$ {l}_{\rm{c}}^{2} $/mm$ {f}_{1} $/Hz$ {f}_{2} $/Hz$ {\rm{T}\rm{L}}_{f1} $/dB$ {\rm{T}\rm{L}}_{f2} $/dB
    1406018854530.736.4
    2505020150029.337.1
    3604021946734.738.8
    下载: 导出CSV

    表 4  9个二阶共鸣器单元的几何参数表

    Table 4.  Geometrical parameters of nine second-order resonators.

    No.$ {S}_{\rm{c}} $/mm2$ {r}_{\rm{n}}^{1} $/mm$ {r}_{\rm{n}}^{2} $/mm
    1100×1004020
    2115×10042.520
    3130×10042.521
    4145×1004321
    5160×1004321
    6175×1004320
    7190×1004120
    8205×1004115
    9220×1004115
    下载: 导出CSV
  • [1]

    Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [2]

    Allard J, Atalla N 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2nd Ed.) (Hoboken: John Wiley & Sons) p15

    [3]

    Yang Z, Mei J, Yang M, Chan N H, Sheng P 2008 Phys. Rev. Lett. 101 204301Google Scholar

    [4]

    Yang Z, Dai H M, Chan N H, Ma G C, Sheng P 2010 Appl. Phys. Lett. 96 041906Google Scholar

    [5]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013Google Scholar

    [6]

    Soto G, Castro A, Vechiatti N, Lasi F, Armas A, Marcovich N E, Mosiewicki M A 2017 Polym. Test. 57 42Google Scholar

    [7]

    Cai X B, Guo Q Q, Hu G K, Yang J 2014 Appl. Phys. Lett. 105 121901Google Scholar

    [8]

    Chen C R, Du Z B, Hu G K, Yang J 2017 Appl. Phys. Lett. 110 221903Google Scholar

    [9]

    刘志恩, 吴旭昌, 杜松泽, 黄涛, 卢炽华, 阮杰, 邵炯炀, 刘国强 2019 数字制造科学 6 143

    Liu Z E, Wu X C, Du S Z, Huang T, Lu Z H, Ruan J, Shao J Y, Liu G Q 2019 Digit. Manu. Sci. 6 143

    [10]

    Shao C, Zhu Y Z, Long H Y, Liu C, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 083504Google Scholar

    [11]

    Gu Y, Long H Y, Cheng Y, Deng M X, Liu X J 2021 Phys. Rev. Appl. 16 014021Google Scholar

    [12]

    Nguyen H, Wu Q, Xu X C, Chen H, Tracy S, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [13]

    Sun M, Fang X S, Mao D X, Wang X, Li Y 2020 Phys. Rev. Appl. 13 044028Google Scholar

    [14]

    Shao C, Xiong W, Long H Y, Tao J C, Cheng Y, Liu X J 2021 J. Acoust. Soc. Am. 150 1044Google Scholar

    [15]

    Dong R Z, Mao D X, Wang X, Li Y 2021 Phys. Rev. Appl. 15 024044Google Scholar

    [16]

    Long H Y, Shao C, Cheng Y, Tao J C, Liu X J 2021 Appl. Phys. Lett. 118 263502Google Scholar

    [17]

    Shen L, Zhu Y F, Mao F L, Gao S Y, Su Z H, Luo Z T, Zhang H, Assouar B 2021 Phys. Rev. Appl. 16 064057Google Scholar

    [18]

    Gao Y X, Cheng Y, Liang B, Li Y, Yang J, Cheng J C 2021 Sci. China-Phys. Mech. Astron. 64 1

    [19]

    Liu C K, Wang H J, Liang B, Cheng J C, Lai Y 2022 Appl. Phys. Lett. 120 231702Google Scholar

    [20]

    Yu Y C, Yang Y Z, Zhao H, Shi Q Q, Kong P, Yang J, Deng K 2022 J. Appl. Phys. 131 135102Google Scholar

    [21]

    Zhu Y Z, Long H Y, Liu C, Zhang H X, Cheng Y, Liu X J 2022 Appl. Phys. Lett. 120 141701Google Scholar

    [22]

    Selamet A, Lee I 2003 J. Acoust. Soc. Am. 113 1975Google Scholar

    [23]

    Ji J, Li D T, Li Y, Jing Y 2020 Front. Mech. Eng-Switz. 6 94

    [24]

    Huang S B, Fang X S, Wang X, Assouar B, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [25]

    Romero-Garc V, Theocharis G, Richoux O, Pagneux V 2016 J. Acoust. Soc. Am. 139 3395Google Scholar

    [26]

    Long H Y, Liu C, Shao C, Cheng Y, Tao J C, Qiu X J, Liu X J 2020 J. Sound Vib. 479 115371Google Scholar

    [27]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502Google Scholar

    [28]

    Ryoo H, Jeon W 2018 Appl. Phys. Lett. 113 121903Google Scholar

    [29]

    Chen J S, Chen Y B, Cheng Y H, Chou L C 2020 Phys. Lett. A 384 126887Google Scholar

    [30]

    Liu C R, Wu J H, Ma F Y, Chen X, Yang Z R 2019 J. Phys. D: Appl. Phys. 52 105302Google Scholar

    [31]

    Huang S B, Zhou Z L, Li D T, Liu T, Wang X, Zhou J, Li Y 2020 Sci. Bull. 65 373Google Scholar

    [32]

    Jiménez N, Groby J P, Romero-García V 2021 Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media (Cham: Springer International Publishing) p103

    [33]

    康钟绪 2009 博士学位论文 (太原: 山西大学)

    Kang Z X 2009 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [34]

    龙厚友 2019 博士学位论文 (南京: 南京大学)

    Long H Y 2019 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)

  • [1] 隋玉梅, 何兆剑, 毕仁贵, 孔鹏, 吴吉恩, 赵鹤平, 邓科. 基于亥姆霍兹共振的超薄弧形声学超表面地毯斗篷. 物理学报, 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] 庞乃琦, 王垠, 葛勇, 施斌杰, 袁寿其, 孙宏祥. 基于多端口波导结构的宽频带声触发器. 物理学报, 2023, 72(16): 164301. doi: 10.7498/aps.72.20230594
    [3] 李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东. 基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器. 物理学报, 2023, 72(22): 224301. doi: 10.7498/aps.72.20231047
    [4] 刘海平, 张世乘, 门玲鸰, 何振强. 面向激光跟踪仪宽频隔振器的理论分析及试验评价. 物理学报, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [5] 胥强荣, 沈承, 韩峰, 卢天健. 一种准零刚度声学超材料板的低频宽频带隔声行为. 物理学报, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [6] 贺子厚, 赵静波, 姚宏, 陈鑫. 薄膜底面Helmholtz腔声学超材料的隔声性能. 物理学报, 2019, 68(21): 214302. doi: 10.7498/aps.68.20191131
    [7] 高东宝, 刘选俊, 田章福, 周泽民, 曾新吾, 韩开锋. 一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究. 物理学报, 2017, 66(1): 014307. doi: 10.7498/aps.66.014307
    [8] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数. 物理学报, 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [9] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [10] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究. 物理学报, 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [11] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [12] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [13] 闫辉, 姜洪源, 刘文剑, 郝振东, Ulannov A. M.. 金属橡胶隔振器随机振动加速度响应分析. 物理学报, 2010, 59(6): 4065-4070. doi: 10.7498/aps.59.4065
    [14] 闫辉, 姜洪源, 刘文剑, Ulannov A. M.. 具有迟滞非线性的金属橡胶隔振器参数识别研究. 物理学报, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [15] 王泽锋, 胡永明, 罗洪, 孟洲, 倪明, 熊水东. 腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响. 物理学报, 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [16] 章若冰, 马晶, 庞冬青, 孙敬华, 王清月. 激光晶体角色散对克尔透镜锁模激光器二阶、三阶色散的影响. 物理学报, 2002, 51(2): 262-269. doi: 10.7498/aps.51.262
    [17] 郑远, 于丽, 杨伯君, 张晓光. 能够补偿二阶偏振模色散的三阶段偏振模色散补偿器. 物理学报, 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
    [18] 章若冰, 孙敬华, 庞冬青, 柴路, 王清月. 用于固体自锁模的三元腔激光器的二阶、三阶色散的解析表示. 物理学报, 2001, 50(5): 897-903. doi: 10.7498/aps.50.897
    [19] 张家树, 肖先赐. 用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器. 物理学报, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [20] 冯瑀正, 蔡秀兰, 郑大瑞, 刘长海. 轻结构隔声测量的新方法. 物理学报, 1978, 27(5): 516-523. doi: 10.7498/aps.27.516
计量
  • 文章访问数:  4542
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 修回日期:  2022-08-13
  • 上网日期:  2022-11-29
  • 刊出日期:  2022-12-05

/

返回文章
返回