搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散焦型非线性薛定谔方程的Whitham调制理论及其间断初值问题解的分类和演化

公睿智 王灯山

引用本文:
Citation:

散焦型非线性薛定谔方程的Whitham调制理论及其间断初值问题解的分类和演化

公睿智, 王灯山

Whitham modulation theory of defocusing nonlinear Schrödinger equation and the classification and evolutions of solutions with initial discontinuity

Gong Rui-Zhi, Wang Deng-Shan
PDF
HTML
导出引用
  • Whitham调制理论自1965年被首次提出后, 由于其在研究色散流体动力学和处理间断初值问题上的独特优势得到了人们的广泛关注. 本文发展了散焦型非线性薛定谔方程的Whitham调制理论, 研究它的间断初值问题解的分类和演化, 并利用直接数值模拟验证结果的正确性. 具体地, 推导出稀疏波和色散冲击波解及其相应的Whitham方程, 详细讨论了每种分类中黎曼不变量和色散流体的密度分布. 最后, 分析了色散流体的活塞问题, 发现了新奇的波状涌潮结构.
    Since the Whitham modulation theory was first proposed in 1965, it has been widely concerned because of its superiority in studying dispersive fluid dynamics and dealing with discontinuous initial value problems. In this paper, the Whitham modulation theory of the defocusing nonlinear Schrödinger equation is developed, and the classification and evolution of the solutions of discontinuous initial value problem are studied. Moreover, the dispersive shock wave region, the rarefaction wave region, the unmodulated wave region and the plateau region are distinguished. Particularly, the correctness of the results is verified by direct numerical simulation. Specifically, the solutions of 0-phase and 1-phase and their corresponding Whitham equations are derived by the finite gap integration method. Also the Whitham equation of genus N corresponding to the N-phase periodic wave solution is derived. The basic structures of rarefaction wave and dispersive shock wave are given, in which the boundaries of the regions are calculated in detail. The Riemann invariants and density distributions of dispersive fluids in each case are discussed. When the initial value is fixed as a special one, the vacuum point is considered and analyzed in detail. In addition, the oscillating front and the soliton front in the dispersive shock wave are considered. In fact, the Whitham modulation theory has many wonderful applications in real physics and engineering. The dam problem is investigated as a special Riemann problem, the piston problem of dispersive fluid is analyzed, and the novel undular bores are found.
      通信作者: 王灯山, dswang@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11971067)资助的课题
      Corresponding author: Wang Deng-Shan, dswang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11971067)
    [1]

    Whitham G B 1965 J. Fluid Mech. 22 273Google Scholar

    [2]

    Luke J C 1966 Proc. R. Soc. London, Ser. A 292 403

    [3]

    Flaschka H, Forest M G, McLaughlin D W 1980 Commun. Pure Appl. Math. 33 739Google Scholar

    [4]

    Hoefer M A, Ablowitz M J, Coddington I, Cornell E A, Engels P, Schweikhard V 2006 Phys. Rev. A 74 023623Google Scholar

    [5]

    Mo Y C, Kishek R A, Feldman D, Haber I, Beaudoin B, O’Shea P G, Thangaraj J C T 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [6]

    Trillo S, Deng G, Biondini G, Klein M, Clauss G F, Chabchoub A, Onorato M 2016 Phys. Rev. Lett. 117 144102Google Scholar

    [7]

    Maiden M D, Lowman N K, Anderson D V, Schubert M E, Hoefer M A 2016 Phys. Rev. Lett. 116 174501Google Scholar

    [8]

    Xu G, Conforti M, Kudlinski A, Mussot A 2017 Phys. Rev. Lett. 118 254101Google Scholar

    [9]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [10]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [11]

    Fatome J, Finot C, Millot G, Armaroli A, Trillo S 2014 Phys. Rev. X 4 021022

    [12]

    Wang J, Li J, Lu D, Guo Q, Hu W 2015 Phys. Rev. A 91 063819Google Scholar

    [13]

    Xu G, Mussot A, Kudlinski A, Trillo S, Copie F, Conforti M 2016 Opt. Lett. 41 2656Google Scholar

    [14]

    Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch T W, Picqué N 2016 Nat. Photonics 10 27Google Scholar

    [15]

    Bendahmane A, Xu G, Conforti M, Kudlinski A, Mussot A, Trillo S 2022 Nat. Commun. 13 3137Google Scholar

    [16]

    Jenkins R 2015 Nonlinearity 28 2131Google Scholar

    [17]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [18]

    Bilman D, Buckingham R, Wang D S 2021 J. Diff. Equ. 297 320Google Scholar

    [19]

    Lou S Y, Hao X 2022 Phys. Lett. A 443 128203Google Scholar

    [20]

    Zhao L C, Xin G G, Yang Z Y, Yang W L 2022 Phys. D 435 133283Google Scholar

    [21]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear Sci. 32 3Google Scholar

    [22]

    Liu Y, Wang D S 2022 Stud. Appl. Math. 149 588Google Scholar

    [23]

    Abeya A, Biondini G, Hoefer M A 2023 J. Phys. A: Math. Theor. 56 025701Google Scholar

    [24]

    Saleh B, Smyth N F 2023 Proc. R. Soc. A 479 20220580Google Scholar

    [25]

    Gong R, Wang D S 2022 Appl. Math. Lett. 126 107795Google Scholar

    [26]

    Gong R, Wang D S 2022 Phys. D 439 133398Google Scholar

    [27]

    El G A, Geogjaev V V, Gurevich A V, Krylov A L 1995 Phys. D 87 186Google Scholar

    [28]

    Congy T, El G A, Hoefer M A, Shearer M 2019 Stud. Appl. Math. 142 241Google Scholar

    [29]

    Dressler R F 1954 Assemblé Général de Rome 38 319

    [30]

    Dressler R F 1952 J. Res. Nat. Bur. Stand. 49 2356

    [31]

    Congy T, Ivanov S K, Kamchatnov A M, Pavloff N 2017 Chaos 27 083107Google Scholar

  • 图 1  两种类型的稀疏波结构 (a) $\lambda_{2}$为常数; (b) $\lambda_{1}$为常数

    Fig. 1.  Two types of RW structure: (a) $\lambda_{2}$ is constant; (b) $\lambda_{1}$ is constant

    图 2  两种冲击波结构及其对应的色散冲击波

    Fig. 2.  Two types of DSW structure and their corresponding dispersive shock waves

    图 3  方程(1)在特殊初值问题(83)式和(84)式下的演化情形 (a)$\rho_0=1/4,\; v_0=1$; (b)$\rho_0=9/4,\; v_0=-1$

    Fig. 3.  Evolution of the Eq. (1) under special initial value problems Eq. (83) and Eq. (84): (a) $\rho_0= 1/4, \;v_0=1$; (b) $\rho_0= 9/4, $$ v_0=-1$

    图 4  方程(1)在特殊初值问题(83)式和(84)式下的演化情形 (a) $\rho=9/16,\; v=-0.5,\; d=-0.5$; (b) $\rho=1/4, \;v=-1,\; d=0$; (c) $\rho= 1/16, \;v=-1.5,\; d=0.5$; (d) $\rho=0.0001, \;v=-1.98,\; d=0.98$

    Fig. 4.  Evolution of the Eq. (1) under special initial value problems Eq. (83) and Eq. (84): (a) $\rho=9/ 16, \;v=-0.5, \;d=-0.5$; (b) $\rho= $$ 1/4, \;v=-1, \;d=0$; (c) $\rho=1/16,\; v=-1.5, \;d=0.5$; (d) $\rho=0.0001, \;v=-1.98,\; d=0.98$

    图 5  一般间断初值问题(7)式的分类图

    Fig. 5.  Classification of solutions to discontinuous initial value problems Eq. (7)

    图 6  情况A下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5,\ \lambda_2^{{\rm{L}}}=0,\ \lambda_1^{{\rm{L}}}=1, \ \lambda_2^{{\rm{R}}}=-2,\ \lambda_1^{{\rm{R}}}=-1$

    Fig. 6.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case A. The parameters are $t=5,\ \lambda_2^{{\rm{L}}}=0,\ \lambda_1^{{\rm{L}}}= 1, $$ \ \lambda_2^{{\rm{R}}}=-2,\ \lambda_1^{{\rm{R}}}=-1$

    图 7  情况A—情况E在$(v, \rho)$平面中解的行为

    Fig. 7.  Behavior of the solution in the $(v, \rho)$ plane for Case A–Case E

    图 8  情况B下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5, \;\lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=0$

    Fig. 8.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case B. The parameters are $t=5, \;\lambda_2^{{\rm{L}}}=-1, $$ \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=0$

    图 9  情况C下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=0, \;\lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=2$

    Fig. 9.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case C. The parameters are $t=8, \;\lambda_2^{{\rm{L}}}=-1,\; $$ \lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=-2,\; \lambda_1^{{\rm{R}}}=2$

    图 10  情况D下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=5,\; \lambda_2^{{\rm{L}}}=-2, \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-1,\; \lambda_1^{{\rm{R}}}=0$

    Fig. 10.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case D. The parameters are $t=5,\; \lambda_2^{{\rm{L}}}=-2, $$ \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=-1,\; \lambda_1^{{\rm{R}}}=0$

    图 11  情况A大坝问题的(a)黎曼不变量与(b)密度函数的分布图. 其中时间为$t=5$

    Fig. 11.  (a) Distribution of Riemann invariants and (b) density function for the dam problem for Case A, where $t=5$

    图 12  情况D大坝问题的(a)黎曼不变量与(b)密度函数的分布图. 其中时间为$t=5$

    Fig. 12.  (a) Distribution of Riemann invariants and (b) density function for the dam problem for Case D, where $t=5$

    图 13  情况E下(a)黎曼不变量的分布、(b)密度函数ρ的波形结构、(c)速度函数v的波形结构与(d)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1, \;\lambda_1^{{\rm{L}}}=1,\; \lambda_2^{{\rm{R}}}=0,\; \lambda_1^{{\rm{R}}}=2$

    Fig. 13.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ, (c) the waveform structure of velocity function v and (d) the evolution process of density function ρ for Case E. The parameters are $t=8,\;\lambda_2^{{\rm{L}}}=-1, $$ \;\lambda_1^{{\rm{L}}}=1, \;\lambda_2^{{\rm{R}}}=0,\; \lambda_1^{{\rm{R}}}=2$

    图 14  情况E的特殊情形下, (a)黎曼不变量的分布、(b)密度函数ρ的波形结构和(c)密度函数ρ分量的演化过程. 其中, 参数选择为$t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=\lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=$2

    Fig. 14.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ and (c) the evolution process of density function ρ for the special case of Case E. The parameters are $t=8,\; \lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=\lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    图 15  情况F中(a)黎曼不变量的分布、(b)密度函数ρ的波形结构和(c)密度函数ρ的演化过程. 其中, 参数选择为$t=8,\; $$ \lambda_2^{{\rm{L}}}=-1, \;\lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    Fig. 15.  (a) Distribution of Riemann invariants, (b) the waveform structure of density function ρ and (c) the evolution process of density function ρ for Case F. The parameters are $t=8, \;\lambda_2^{{\rm{L}}}=-1,\; \lambda_1^{{\rm{L}}}=0,\; \lambda_2^{{\rm{R}}}=1,\; \lambda_1^{{\rm{R}}}=2$

    图 16  活塞问题中, (a)黎曼不变量的分布与(b)密度函数ρ的波形结构, 其中时间选取为$t=5$

    Fig. 16.  (a) Distribution of the Riemann invariant and (b) the waveform structure of the density function ρ in the piston problem, where $t=5$

  • [1]

    Whitham G B 1965 J. Fluid Mech. 22 273Google Scholar

    [2]

    Luke J C 1966 Proc. R. Soc. London, Ser. A 292 403

    [3]

    Flaschka H, Forest M G, McLaughlin D W 1980 Commun. Pure Appl. Math. 33 739Google Scholar

    [4]

    Hoefer M A, Ablowitz M J, Coddington I, Cornell E A, Engels P, Schweikhard V 2006 Phys. Rev. A 74 023623Google Scholar

    [5]

    Mo Y C, Kishek R A, Feldman D, Haber I, Beaudoin B, O’Shea P G, Thangaraj J C T 2013 Phys. Rev. Lett. 110 084802Google Scholar

    [6]

    Trillo S, Deng G, Biondini G, Klein M, Clauss G F, Chabchoub A, Onorato M 2016 Phys. Rev. Lett. 117 144102Google Scholar

    [7]

    Maiden M D, Lowman N K, Anderson D V, Schubert M E, Hoefer M A 2016 Phys. Rev. Lett. 116 174501Google Scholar

    [8]

    Xu G, Conforti M, Kudlinski A, Mussot A 2017 Phys. Rev. Lett. 118 254101Google Scholar

    [9]

    Wan W, Jia S, Fleischer J W 2007 Nat. Phys. 3 46Google Scholar

    [10]

    Conti C, Fratalocchi A, Peccianti M, Ruocco G, Trillo S 2009 Phys. Rev. Lett. 102 083902Google Scholar

    [11]

    Fatome J, Finot C, Millot G, Armaroli A, Trillo S 2014 Phys. Rev. X 4 021022

    [12]

    Wang J, Li J, Lu D, Guo Q, Hu W 2015 Phys. Rev. A 91 063819Google Scholar

    [13]

    Xu G, Mussot A, Kudlinski A, Trillo S, Copie F, Conforti M 2016 Opt. Lett. 41 2656Google Scholar

    [14]

    Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hänsch T W, Picqué N 2016 Nat. Photonics 10 27Google Scholar

    [15]

    Bendahmane A, Xu G, Conforti M, Kudlinski A, Mussot A, Trillo S 2022 Nat. Commun. 13 3137Google Scholar

    [16]

    Jenkins R 2015 Nonlinearity 28 2131Google Scholar

    [17]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [18]

    Bilman D, Buckingham R, Wang D S 2021 J. Diff. Equ. 297 320Google Scholar

    [19]

    Lou S Y, Hao X 2022 Phys. Lett. A 443 128203Google Scholar

    [20]

    Zhao L C, Xin G G, Yang Z Y, Yang W L 2022 Phys. D 435 133283Google Scholar

    [21]

    Wang D S, Xu L, Xuan Z 2022 J. Nonlinear Sci. 32 3Google Scholar

    [22]

    Liu Y, Wang D S 2022 Stud. Appl. Math. 149 588Google Scholar

    [23]

    Abeya A, Biondini G, Hoefer M A 2023 J. Phys. A: Math. Theor. 56 025701Google Scholar

    [24]

    Saleh B, Smyth N F 2023 Proc. R. Soc. A 479 20220580Google Scholar

    [25]

    Gong R, Wang D S 2022 Appl. Math. Lett. 126 107795Google Scholar

    [26]

    Gong R, Wang D S 2022 Phys. D 439 133398Google Scholar

    [27]

    El G A, Geogjaev V V, Gurevich A V, Krylov A L 1995 Phys. D 87 186Google Scholar

    [28]

    Congy T, El G A, Hoefer M A, Shearer M 2019 Stud. Appl. Math. 142 241Google Scholar

    [29]

    Dressler R F 1954 Assemblé Général de Rome 38 319

    [30]

    Dressler R F 1952 J. Res. Nat. Bur. Stand. 49 2356

    [31]

    Congy T, Ivanov S K, Kamchatnov A M, Pavloff N 2017 Chaos 27 083107Google Scholar

  • [1] 王金玲, 张昆, 林机, 李慧军. 二维激子-极化子凝聚体中冲击波的产生与调控. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240229
    [2] 李永飞, 郭瑞明, 赵航芳. 浅海内波环境下声场干涉条纹的稀疏重建. 物理学报, 2023, 72(7): 074301. doi: 10.7498/aps.72.20221932
    [3] 刘萍, 徐恒睿, 杨建荣. Boussinesq方程的Lax对、Bäcklund变换、对称群变换和Riccati展开相容性. 物理学报, 2020, 69(1): 010203. doi: 10.7498/aps.69.20191316
    [4] 张涛, 侯宏, 鲍明. 基于稀疏重构的尾波干涉成像方法. 物理学报, 2019, 68(19): 199101. doi: 10.7498/aps.68.20190831
    [5] 何民卿, 董全力, 盛政明, 张杰. 激光驱动的冲击波自生磁场以及外加磁场的冲击波放大研究. 物理学报, 2015, 64(10): 105202. doi: 10.7498/aps.64.105202
    [6] 鲁峰, 陈朗, 冯长根. 冲击波诱导Nd2Fe14B磁相变的理论计算研究. 物理学报, 2014, 63(16): 167501. doi: 10.7498/aps.63.167501
    [7] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [8] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [9] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [10] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [11] 赵寿根. 事故地点对交通波的影响研究. 物理学报, 2009, 58(11): 7497-7501. doi: 10.7498/aps.58.7497
    [12] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [13] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [14] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程. 物理学报, 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [15] 卞保民, 杨 玲, 张 平, 纪运景, 李振华, 倪晓武. 理想气体球面强冲击波一般自模拟运动模型. 物理学报, 2006, 55(8): 4181-4187. doi: 10.7498/aps.55.4181
    [16] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [17] 顾永玉, 张永康, 张兴权, 史建国. 约束层对激光驱动冲击波压力影响机理的理论研究. 物理学报, 2006, 55(11): 5885-5891. doi: 10.7498/aps.55.5885
    [18] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 多波长系统孤子耦合方程的可积性. 物理学报, 2004, 53(6): 1623-1628. doi: 10.7498/aps.53.1623
    [19] 周振江, 李志斌. Broer-Kaup系统的达布变换和新的精确解. 物理学报, 2003, 52(2): 262-266. doi: 10.7498/aps.52.262
    [20] 顾援, 倪元龙, 王勇刚, 毛楚生, 吴逢春, 吴江, 朱俭, 万炳根. 激光驱动高压冲击波的实验观察. 物理学报, 1988, 37(10): 1690-1693. doi: 10.7498/aps.37.1690
计量
  • 文章访问数:  2389
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-11
  • 修回日期:  2023-03-16
  • 上网日期:  2023-03-21
  • 刊出日期:  2023-05-20

/

返回文章
返回