搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯褶皱行为与结构的分子模拟研究

陈超 段芳莉

引用本文:
Citation:

氧化石墨烯褶皱行为与结构的分子模拟研究

陈超, 段芳莉

Effect of functional groups on crumpling behavior and structure of graphene oxide

Chen Chao, Duan Fang-Li
PDF
HTML
导出引用
  • 应用反应力场分子动力学方法, 模拟了单层氧化石墨烯在径向压缩作用下的褶皱过程, 研究了含氧基团(羟基、环氧基)对氧化石墨烯褶皱行为以及褶皱球结构稳定性的影响. 当石墨烯仅含羟基时, 该类氧化石墨烯呈现出“推进式”的褶皱行为, 而当石墨烯仅含环氧基时, 该类氧化石墨烯则呈现出片层与片层“贴合式”的褶皱行为. 褶皱行为的不同决定了氧化石墨烯最终褶皱球结构的差异. 通过分析原子级势能增量分布与C—C成、断键位置之间的关系, 发现氧化石墨烯上C—C成、断键主要发生在变形较为严重的区域, 且相较于羟基, 环氧基对与其连接的C—C键具有更强的削弱作用. 为了研究氧化石墨烯褶皱球的结构稳定性, 模拟了其在无约束条件下的释放过程. 发现氧化石墨烯褶皱球的结构稳定性取决于其中C—C成、断键数量, 即C—C成、断键的数量越多, 结构越稳定, 且在同一氧化率下, 褶皱球的结构稳定性随环氧基比例的增大而提高. 本研究表明, 通过改变氧化石墨烯片层上含氧基团的相对比例, 可实现对其褶皱球稳定性的控制.
    Graphene has a wide range of applications in the fields of electricity, chemistry, biomedicine, and lubrication. But the strong van der Waals interaction between graphene sheets makes it easy to aggregate in preparation process, difficult to produce and put into practical applcation on a large-scale. There are many methods to prevent the graphene sheets from aggregating, such as reducing the size of sheets, adjusting the interaction between solvent and graphene, and using dispersant. Another possible method is to turn the sheet graphene into a three-dimensional structure like the crumpled paper. Compared with sheet graphene, the crumpled graphene ball has excellent aggregation-resistant. The current research on crumpled graphene ball mainly focuses on the effect of the initial structure of graphene sheet on the structure stability of the crumpled ball, but rarely involves the effect of functional groups. In this paper, ReaxFF molecular dynamics is used to simulate the crumpling process of graphene oxide sheet. The effect of functional groups (hydroxyl, epoxy) on the crumpling behavior and the stability of the crumpled ball of graphene oxide are studied. Graphene sheet oxidized by hydroxyl exhibits a push-up crumpling behavior. Graphene sheet oxidized by epoxy exhibits a layer-to-layer fitted crumpling behavior. Different crumpling behavior will lead to the difference in final crumpled ball structure. By analyzing the relationship between the atomic level potential energy incremental distribution and the distribution of broken and formed C—C bonds, we find that the broken and formed C—C bonds mainly occur in areas with a large degree of deformation, and the epoxy group has a stronger weakening effect on the C—C bond connected to it than the hydroxyl group. The release process of graphene oxide crumpled ball is simulated to study its structural stability. The stability of graphene oxide crumpled ball depends on the number of the broken and formed C—C bonds, that is, the more the number of broken and formed C—C bonds, the more stable the structure is, and under the same oxidation rate, the stability of the crumpled ball structure increases with the proportion of epoxy groups increasing. This study shows that the stability of graphene oxide crumpled ball structure can be controlled by changing the relative proportion of functional groups.
      通信作者: 段芳莉, flduan@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51775066)资助的课题
      Corresponding author: Duan Fang-Li, flduan@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51775066)
    [1]

    Varshney V, Patnaik S S, Roy A K, Froudakis G, Farmer B L 2010 ACS Nano 4 1153Google Scholar

    [2]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [3]

    Sakhaee-Pour A 2009 Comput. Mater. Sci. 45 266Google Scholar

    [4]

    尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502Google Scholar

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502Google Scholar

    [5]

    Tozzini V, Pellegrini V 2013 Phys. Chem. Chem. Phys. 15 80Google Scholar

    [6]

    Song Z P, Xu T, Gordin M L, Jiang Y B, Bae I T, Xiao Q F, Zhan H, Liu J, Wang D H 2012 Nano Lett. 12 2205Google Scholar

    [7]

    Yang X W, Zhu J W, Qiu L, Li D 2011 Adv. Mater. 23 2833Google Scholar

    [8]

    Tung V C, Allen M J, Yang Y, Kaner R B 2009 Nat. Nanotechnol. 4 25Google Scholar

    [9]

    Luo J, Cote L J, Tung V C, Tan A T L, Goins P E, Wu J S, Huang J X 2010 J. Am. Chem. Soc. 132 17667Google Scholar

    [10]

    Li D, Mueller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [11]

    Korkut S, Roy-Mayhew J D, Dabbs D M, Milius D L, Aksay I A 2011 ACS Nano 5 5214Google Scholar

    [12]

    Hamilton C E, Lomeda J R, Sun Z Z, Tour J M, Barron A R 2009 Nano Lett. 9 3460Google Scholar

    [13]

    Tallinen T, Astrom J A, Timonen J 2009 Nat. Mater. 8 25Google Scholar

    [14]

    Matan K, Williams R B, Witten T A, Nagel S R 2002 Phys. Rev. Lett. 88 076101Google Scholar

    [15]

    Lobkovsky A, Gentges S, Li H, Morse D, Witten T A 1995 Science 270 1482Google Scholar

    [16]

    Luo J Y, Jang H D, Sun T, Xiao L, He Z, Katsoulidis A P, Kanatzidis M G, Gibson J M, Huang J X 2011 ACS Nano 5 8943Google Scholar

    [17]

    邓剑锋, 李慧琴, 于帆, 梁齐 2020 物理学报 69 076802Google Scholar

    Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar

    [18]

    Dou X, Koltonow A R, He X L, Jang H D, Wang Q, Chung Y W, Huang J X 2016 Proc. Natl. Acad. Sci. U. S. A. 113 1528Google Scholar

    [19]

    Cranford S W, Buehler M J 2011 Phys. Rev. B 84 205451Google Scholar

    [20]

    Chang C, Song Z G, Lin J, Xu Z P 2013 RSC Adv. 3 2720Google Scholar

    [21]

    Becton M, Zhang L Y, Wang X Q 2015 Phys. Chem. Chem. Phys. 17 6297Google Scholar

    [22]

    Becton M, Zhang L Y, Wang X Q 2014 Phys. Chem. Chem. Phys. 16 18233Google Scholar

    [23]

    Baimova J A, Rysaeva L K, Liu B, Dmitriev S V, Zhou K 2015 Phys. Status Solidi B 252 1502Google Scholar

    [24]

    Baimova J A, Liu B, Dmitriev S V, Zhou K 2015 J. Phys. D: Appl. Phys. 48 095302Google Scholar

    [25]

    Wan J, Jiang J W, Park H S 2018 J. Phys. D: Appl. Phys. 51 015302Google Scholar

    [26]

    Wang W N, Jiang Y, Biswas P 2012 J. Phys. Chem. Lett. 3 3228Google Scholar

    [27]

    Soler-Crespo R A, Gao W, Xiao P H, Wei X D, Paci J T, Henkelman G, Espinosa H D 2016 J. Phys. Chem. Lett. 7 2702Google Scholar

    [28]

    Chenoweth K, van Duin A C T, Goddard W A, 2008 J. Phys. Chem. A 112 1040Google Scholar

    [29]

    Verma A, Parashar A 2018 Nanotechnology 29 115706Google Scholar

    [30]

    Meng L J, Jiang J, Wang J L, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [31]

    Wang L F, Duan F L 2018 Tribol. Int. 123 266Google Scholar

    [32]

    Li J L, Kudin K N, McAllister M J, Prud'homme R K, Aksay I A, Car R 2006 Phys. Rev. Lett. 96 176101Google Scholar

  • 图 1  氧化石墨烯片层在径向压缩作用下褶皱过程示意图

    Fig. 1.  Schematic diagram of the crumpling process of graphene oxide sheet under radial compression.

    图 2  不同含氧基团比例修饰石墨烯片层的褶皱过程(ϕ = 50%)

    Fig. 2.  Atomistic configurations during the crumpling process of graphene oxide sheets with various ratios of oxygen functional groups (ϕ = 50%).

    图 3  含氧基团类型对石墨烯片层褶皱过程最终结构的影响(ϕ = 50%)

    Fig. 3.  Final structures resulted from the crumpling process of graphene oxide sheets with σ = 0 and 1 (ϕ = 50%).

    图 4  褶皱过程中的势能增量分布、C—C断键和成键原子对位置分布(ϕ = 15%) (a) σ = 0; (b) σ = 1

    Fig. 4.  Distributions of the potential energy increment and the distribution of broken and formed C—C bonds during the crumpling process of graphene oxide sheets with (a) σ = 0 and (b) σ = 1.

    图 5  不同氧化率石墨烯片层褶皱过程的C—C断键、成键数量变化 (a) σ = 0; (b) σ = 1

    Fig. 5.  Variations in the number of broken and formed C—C bonds during the crumpling process of graphene oxide sheets with (a) σ = 0 and (b) σ = 1.

    图 6  不同含氧基团比例石墨烯片层褶皱过程的C—C断键、成键数量变化(ϕ = 50%)

    Fig. 6.  Variations in the number of broken and formed C—C bonds during the crumpling process of graphene oxide sheets with ϕ = 50%.

    图 7  (a) 释放开始时刻的碳原子数密度与释放稳定后的ρg值; (b) 释放开始时刻的C—C断键、成键数量 (σ = 0)

    Fig. 7.  (a) Number density of C atoms at the beginning of release process and the ρg value at the end of release process; (b) Number of broken and formed C—C bonds at the beginning of release process for the graphene oxide sheets with σ = 0.

    图 8  (a) 释放开始时刻的碳原子数密度与释放稳定后的ρg值; (b) 释放开始时刻的C—C断键、成键数量 (ϕ = 50%)

    Fig. 8.  (a) Number density of C atoms at the beginning of release process and the ρg value at the end of release process; (b) Number of broken and formed C—C bonds at the beginning of release process for the graphene oxide sheets with ϕ = 50%.

  • [1]

    Varshney V, Patnaik S S, Roy A K, Froudakis G, Farmer B L 2010 ACS Nano 4 1153Google Scholar

    [2]

    Yazyev O V, Louie S G 2010 Nat. Mater. 9 806Google Scholar

    [3]

    Sakhaee-Pour A 2009 Comput. Mater. Sci. 45 266Google Scholar

    [4]

    尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502Google Scholar

    Yin W H, Han Q, Yang X H 2012 Acta Phys. Sin. 61 248502Google Scholar

    [5]

    Tozzini V, Pellegrini V 2013 Phys. Chem. Chem. Phys. 15 80Google Scholar

    [6]

    Song Z P, Xu T, Gordin M L, Jiang Y B, Bae I T, Xiao Q F, Zhan H, Liu J, Wang D H 2012 Nano Lett. 12 2205Google Scholar

    [7]

    Yang X W, Zhu J W, Qiu L, Li D 2011 Adv. Mater. 23 2833Google Scholar

    [8]

    Tung V C, Allen M J, Yang Y, Kaner R B 2009 Nat. Nanotechnol. 4 25Google Scholar

    [9]

    Luo J, Cote L J, Tung V C, Tan A T L, Goins P E, Wu J S, Huang J X 2010 J. Am. Chem. Soc. 132 17667Google Scholar

    [10]

    Li D, Mueller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [11]

    Korkut S, Roy-Mayhew J D, Dabbs D M, Milius D L, Aksay I A 2011 ACS Nano 5 5214Google Scholar

    [12]

    Hamilton C E, Lomeda J R, Sun Z Z, Tour J M, Barron A R 2009 Nano Lett. 9 3460Google Scholar

    [13]

    Tallinen T, Astrom J A, Timonen J 2009 Nat. Mater. 8 25Google Scholar

    [14]

    Matan K, Williams R B, Witten T A, Nagel S R 2002 Phys. Rev. Lett. 88 076101Google Scholar

    [15]

    Lobkovsky A, Gentges S, Li H, Morse D, Witten T A 1995 Science 270 1482Google Scholar

    [16]

    Luo J Y, Jang H D, Sun T, Xiao L, He Z, Katsoulidis A P, Kanatzidis M G, Gibson J M, Huang J X 2011 ACS Nano 5 8943Google Scholar

    [17]

    邓剑锋, 李慧琴, 于帆, 梁齐 2020 物理学报 69 076802Google Scholar

    Deng J F, Li H Q, Yu F, Liang Q 2020 Acta Phys. Sin. 69 076802Google Scholar

    [18]

    Dou X, Koltonow A R, He X L, Jang H D, Wang Q, Chung Y W, Huang J X 2016 Proc. Natl. Acad. Sci. U. S. A. 113 1528Google Scholar

    [19]

    Cranford S W, Buehler M J 2011 Phys. Rev. B 84 205451Google Scholar

    [20]

    Chang C, Song Z G, Lin J, Xu Z P 2013 RSC Adv. 3 2720Google Scholar

    [21]

    Becton M, Zhang L Y, Wang X Q 2015 Phys. Chem. Chem. Phys. 17 6297Google Scholar

    [22]

    Becton M, Zhang L Y, Wang X Q 2014 Phys. Chem. Chem. Phys. 16 18233Google Scholar

    [23]

    Baimova J A, Rysaeva L K, Liu B, Dmitriev S V, Zhou K 2015 Phys. Status Solidi B 252 1502Google Scholar

    [24]

    Baimova J A, Liu B, Dmitriev S V, Zhou K 2015 J. Phys. D: Appl. Phys. 48 095302Google Scholar

    [25]

    Wan J, Jiang J W, Park H S 2018 J. Phys. D: Appl. Phys. 51 015302Google Scholar

    [26]

    Wang W N, Jiang Y, Biswas P 2012 J. Phys. Chem. Lett. 3 3228Google Scholar

    [27]

    Soler-Crespo R A, Gao W, Xiao P H, Wei X D, Paci J T, Henkelman G, Espinosa H D 2016 J. Phys. Chem. Lett. 7 2702Google Scholar

    [28]

    Chenoweth K, van Duin A C T, Goddard W A, 2008 J. Phys. Chem. A 112 1040Google Scholar

    [29]

    Verma A, Parashar A 2018 Nanotechnology 29 115706Google Scholar

    [30]

    Meng L J, Jiang J, Wang J L, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [31]

    Wang L F, Duan F L 2018 Tribol. Int. 123 266Google Scholar

    [32]

    Li J L, Kudin K N, McAllister M J, Prud'homme R K, Aksay I A, Car R 2006 Phys. Rev. Lett. 96 176101Google Scholar

  • [1] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [4] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [8] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [9] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [10] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [11] 鲁延玲, 蒋国平, 宋玉蓉. 自适应网络中病毒传播的稳定性和分岔行为研究. 物理学报, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [12] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [13] 颜笑, 辛子华, 张娇娇. 碳硅二炔结构及性质分子动力学模拟研究. 物理学报, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [14] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [15] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究. 物理学报, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [16] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [17] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [18] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [19] 李 欣, 胡元中, 王 慧, 陈 辉. 润滑膜全氟聚醚的稳定性. 物理学报, 2007, 56(7): 4094-4098. doi: 10.7498/aps.56.4094
    [20] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
计量
  • 文章访问数:  8974
  • PDF下载量:  240
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-02
  • 修回日期:  2020-05-29
  • 上网日期:  2020-09-28
  • 刊出日期:  2020-10-05

/

返回文章
返回