搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期莫尔晶格中里德伯缀饰玻色气体的基态结构

许丽 陈思霖 杨雪滢 张晓斐

引用本文:
Citation:

周期莫尔晶格中里德伯缀饰玻色气体的基态结构

许丽, 陈思霖, 杨雪滢, 张晓斐

Ground state of Rydberg-dressed Bose gas confined in periodic moiré lattices

Xu Li, Chen Si-Lin, Yang Xue-Ying, Zhang Xiao-Fei
PDF
HTML
导出引用
  • 里德伯缀饰和自旋轨道耦合的实验实现极大地拓宽了冷原子作为量子模拟平台的研究视野. 本文研究了莫尔晶格中里德伯缀饰自旋轨道耦合玻色气体的基态结构, 探索了非局域里德伯相互作用和自旋轨道耦合强度对该系统基态的影响. 研究发现, 当出现非局域里德伯相互作用时, 系统不再具有平移对称性, 倾向于形成更多更规则的周期性结构; 当存在自旋轨道耦合相互作用时, 系统的基态在此周期性结构的基础上, 将呈现出更加丰富的内部结构.
    The experimental realization of Rydberg dressing and spin-orbit coupling greatly broadens the research field of ultracold atoms as a quantum simulation platform. Very recently, moiré lattices have attracted intensive study, ranging from condensed matter to ultracold physics. In this paper, the ground-state structure of Rydberg-dressed Bose gas with spin-orbit coupling and confined in moiré lattices is studied, and the effects of nonlocal Rydberg interaction and spin-orbit coupling on the ground state of the system are explored. Our results show that the system has no translational symmetry due to the presence of nonlocal Rydberg interaction, and more and more regular periodic structures present with the increases of the strength of nonlocal Rydberg interaction. In the presence of spin-orbit coupling, the Hamiltonian of the system has an imaginary part, and the phase of the system is not uniformly distributed. It is found that the ground state of the system with spin-orbit coupling present more abundant internal structure base on these periodic structures. The results pave the way for future study of moiré physics in ultracold atom system.
      通信作者: 杨雪滢, xyyang@nudt.edu.cn ; 张晓斐, xfzhang@sust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175129)、中国科学院前沿科学重点研究计划(批准号: ZDBS-LY-7016)、陕西省高校青年创新团队、山西工程技术学院科研项目(批准号: 2022004)和山西工程技术学院“1331工程”校内培育项目(批准号: 2019XF-04)资助的课题
      Corresponding author: Yang Xue-Ying, xyyang@nudt.edu.cn ; Zhang Xiao-Fei, xfzhang@sust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175129), the Key Research Program of Frontier Sciences of Chinese Academy of Sciences, China (Grant No. ZDBS-LY-7016), the Youth Innovation Team of Shaanxi Universities, China, the Scientific Research Project of Shanxi Institute of Technology, China (Grant No. 2022004), and the 1331 Project of Shanxi Institute of Technology, China (Grant No. 2019XF-04)
    [1]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [2]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [3]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [4]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [5]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [6]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Hunag P P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [7]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [8]

    Li D H, Huang L H, Peng P, Bian G Q, Wang P J, Meng Z M, Chen L C, Zhang J 2020 Phys. Rev. A 102 013309Google Scholar

    [9]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [10]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [11]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [12]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X B, Guo G C, Zhang C W 2013 Nat. Commun. 4 2710Google Scholar

    [13]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [14]

    Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L 2018 Science 359 301Google Scholar

    [15]

    Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Low R, Pfau T 2008 Phys. Rev. Lett. 100 033601Google Scholar

    [16]

    Henkel N, Nath R, Pohl T 2010 Phys. Rev. Lett. 104 195302Google Scholar

    [17]

    Hsueh C H, Tsai Y C, Wu K S, Chang M S, Wu W C 2013 Phys. Rev. A 88 043646Google Scholar

    [18]

    Zhou Y J, Li Y Q, Nath R, Li W B 2020 Phys. Rev. A 101 013427Google Scholar

    [19]

    Han W, Zhang X F, Wang D S, Jiang H F, Zhang W, Zhang S G 2018 Phys. Rev. Lett. 121 030404Google Scholar

    [20]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [21]

    Cinti F, Jain P, Boninsegni M, Micheli A, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 105 135301Google Scholar

    [22]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [23]

    McCormack G, Nath R, Li W B 2020 Phys. Rev. A 102 023319Google Scholar

    [24]

    Hsueh C, Wang C W, Wu W C 2020 Phys. Rev. A 102 063307Google Scholar

    [25]

    王鹏, 傅其栋, 李雨芮, 叶芳伟 2021 中国光学 14 986Google Scholar

    Wang P, Fu Q D, Li Y R, Ye F W 2021 Chinese Optics 14 986Google Scholar

    [26]

    Wang P, Zheng Y L, Chen X F, Huang C M, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nature 577 42Google Scholar

    [27]

    López M R, Peñaranda F, Christensen J, San-Jose P 2020 Phys. Rev. Lett. 125 214301Google Scholar

    [28]

    O'Riordan L J, White A C, Busch Th 2016 Phys. Rev. A 93 023609Google Scholar

    [29]

    González-Tudela A, Cirac J I 2019 Phys. Rev. A 100 053604Google Scholar

    [30]

    Liu Y, Holder T, Yan B 2021 Innovation 2 100085

    [31]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2021 arXiv: 2110.00149 v2 [cond-mat.quant-gas]

    [32]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [33]

    张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302Google Scholar

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302Google Scholar

    [34]

    Boninsegni M, Prokof’ev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [35]

    施婷婷, 汪六九, 王璟琨, 张威 2020 物理学报 69 016701Google Scholar

    Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar

    [36]

    White A C, Zhang Y, Busch T 2017 Phys. Rev. A 95 041604Google Scholar

    [37]

    Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629Google Scholar

  • 图 1  相同子晶格振幅下不同旋转角所对应的莫尔外势($ p_1=p_2=1 $) (a) $ \tan \theta =5/12 $; (b) $ \tan \theta = 3^{-1/2} $; (c) $ \tan \theta =3/4 $

    Fig. 1.  Moiré potential corresponding to different rotation angles at the same sublattice amplitude ($ p_1=p_2=1 $): (a) $ \tan \theta =5/12 $; (b) $ \tan \theta = 3^{-1/2} $; (c) $ \tan \theta =3/4 $.

    图 2  周期莫尔晶格中里德伯缀饰玻色气体的基态密度和相位分布图 (a) $ {g}=1000 $, $ C_{6}=\kappa=0 $; (b) $ {g}=8000 $, $ C_{6}=\kappa=0 $

    Fig. 2.  Density and phase distributions of Rydberg-dressed Bose gas confined in periodic moiré lattices: (a) ${g}=1000$, $ C_{6}=\kappa=0 $; (b) ${g}=8000$, $ C_{6}=\kappa=0 $.

    图 3  周期莫尔晶格中里德伯缀饰玻色气体的基态密度和相位分布图 (a) $ C_{6}=1000 $, ${g}=\kappa=0$; (b) $ C_{6}=20000 $, ${g}= \kappa=0$

    Fig. 3.  Density and phase distributions of Rydberg-Dressed Bose gas confined in periodic moiré lattices: (a) $ C_{6}=1000 $, ${g}=\kappa=0$; (b) $ C_{6}=20000 $, ${g}=\kappa=0$.

    图 4  周期莫尔晶格中里德伯缀饰玻色气体的基态密度和相位分布图 (a) $ \kappa=3 $, ${g}=C_{6}=1000$; (b) $ \kappa=5 $, ${g}=C_{6}=1000$; (c) $ \kappa=10 $, ${g}=C_{6}=1000$

    Fig. 4.  Density and phase distributions of Rydberg-dressed Bose gas confined in periodic moiré lattices: (a) $ \kappa=3 $, $ \text{g}=C_{6}=1000 $; (b) $ \kappa=5 $, ${g}=C_{6}=1000$; (c) $ \kappa=10 $, ${g}=C_{6}=1000$.

  • [1]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83Google Scholar

    [2]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [3]

    Wang P J, Yu Z Q, Fu Z K, Miao J, Huang L H, Chai S J, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [4]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [5]

    Huang L H, Meng Z M, Wang P J, Peng P, Zhang S L, Chen L C, Li D H, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [6]

    Chen H R, Lin K Y, Chen P K, Chiu N C, Wang J B, Chen C A, Hunag P P, Yip S K, Kawaguchi Y, Lin Y J 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [7]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [8]

    Li D H, Huang L H, Peng P, Bian G Q, Wang P J, Meng Z M, Chen L C, Zhang J 2020 Phys. Rev. A 102 013309Google Scholar

    [9]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [10]

    Wang C J, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403Google Scholar

    [11]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403Google Scholar

    [12]

    Qu C L, Zheng Z, Gong M, Xu Y, Mao L, Zou X B, Guo G C, Zhang C W 2013 Nat. Commun. 4 2710Google Scholar

    [13]

    Li J R, Lee J, Huang W, Burchesky S, Shteynas B, Top F C, Jamison A O, Ketterle W 2017 Nature 543 91Google Scholar

    [14]

    Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, Tarruell L 2018 Science 359 301Google Scholar

    [15]

    Heidemann R, Raitzsch U, Bendkowsky V, Butscher B, Low R, Pfau T 2008 Phys. Rev. Lett. 100 033601Google Scholar

    [16]

    Henkel N, Nath R, Pohl T 2010 Phys. Rev. Lett. 104 195302Google Scholar

    [17]

    Hsueh C H, Tsai Y C, Wu K S, Chang M S, Wu W C 2013 Phys. Rev. A 88 043646Google Scholar

    [18]

    Zhou Y J, Li Y Q, Nath R, Li W B 2020 Phys. Rev. A 101 013427Google Scholar

    [19]

    Han W, Zhang X F, Wang D S, Jiang H F, Zhang W, Zhang S G 2018 Phys. Rev. Lett. 121 030404Google Scholar

    [20]

    Zhang X F, Wen L, Wang L X, Chen G P, Tan R B, Saito H 2022 Phys. Rev. A 105 033306Google Scholar

    [21]

    Cinti F, Jain P, Boninsegni M, Micheli A, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 105 135301Google Scholar

    [22]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [23]

    McCormack G, Nath R, Li W B 2020 Phys. Rev. A 102 023319Google Scholar

    [24]

    Hsueh C, Wang C W, Wu W C 2020 Phys. Rev. A 102 063307Google Scholar

    [25]

    王鹏, 傅其栋, 李雨芮, 叶芳伟 2021 中国光学 14 986Google Scholar

    Wang P, Fu Q D, Li Y R, Ye F W 2021 Chinese Optics 14 986Google Scholar

    [26]

    Wang P, Zheng Y L, Chen X F, Huang C M, Kartashov Y V, Torner L, Konotop V V, Ye F W 2020 Nature 577 42Google Scholar

    [27]

    López M R, Peñaranda F, Christensen J, San-Jose P 2020 Phys. Rev. Lett. 125 214301Google Scholar

    [28]

    O'Riordan L J, White A C, Busch Th 2016 Phys. Rev. A 93 023609Google Scholar

    [29]

    González-Tudela A, Cirac J I 2019 Phys. Rev. A 100 053604Google Scholar

    [30]

    Liu Y, Holder T, Yan B 2021 Innovation 2 100085

    [31]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2021 arXiv: 2110.00149 v2 [cond-mat.quant-gas]

    [32]

    Eddy T, Paolo T, Mahir H, Arthur K 1999 Phys. Rep. 315 199Google Scholar

    [33]

    张晓斐, 张培, 陈光平, 董彪, 谭仁兵, 张首刚 2015 物理学报 64 060302Google Scholar

    Zhang X F, Zhang P, Chen G P, Dong B, Tan R B, Zhang S G 2015 Acta Phys. Sin. 64 060302Google Scholar

    [34]

    Boninsegni M, Prokof’ev N V 2012 Rev. Mod. Phys. 84 759Google Scholar

    [35]

    施婷婷, 汪六九, 王璟琨, 张威 2020 物理学报 69 016701Google Scholar

    Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar

    [36]

    White A C, Zhang Y, Busch T 2017 Phys. Rev. A 95 041604Google Scholar

    [37]

    Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M, Zhang S G 2016 Phys. Rev. A 94 033629Google Scholar

  • [1] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [2] 刘钊. 莫尔超晶格中的分数化拓扑量子态. 物理学报, 2024, 73(20): 207303. doi: 10.7498/aps.73.20241029
    [3] 廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤. 光晶格作用下里德伯冷原子系统中的二维空间光孤子. 物理学报, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [4] 古杰, 马立国. 莫尔晶格中的激子绝缘体. 物理学报, 2023, 72(6): 067101. doi: 10.7498/aps.72.20230079
    [5] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [6] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展. 物理学报, 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [7] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [8] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [9] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则. 物理学报, 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [10] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [11] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [12] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [13] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为. 物理学报, 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [14] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数. 物理学报, 2009, 58(5): 2878-2883. doi: 10.7498/aps.58.2878
    [15] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [16] 陈海军, 薛具奎. Bessel型光晶格中双组分玻色-爱因斯坦凝聚体的基态解. 物理学报, 2008, 57(7): 3962-3968. doi: 10.7498/aps.57.3962
    [17] 徐志君, 施建青, 林国成. 轴对称谐振势阱中玻色凝聚气体基态和单涡旋态解. 物理学报, 2007, 56(2): 666-672. doi: 10.7498/aps.56.666
    [18] 徐志君, 王冬梅, 李 珍. 一维光晶格中玻色凝聚气体的干涉. 物理学报, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [19] 袁都奇. 相互作用对玻色气体热力学性质及稳定性的影响. 物理学报, 2006, 55(4): 1634-1638. doi: 10.7498/aps.55.1634
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  3420
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-02
  • 修回日期:  2023-01-01
  • 上网日期:  2023-01-12
  • 刊出日期:  2023-05-20

/

返回文章
返回