搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

刘浪 王一平

引用本文:
Citation:

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

刘浪, 王一平

phonon-photon in frequency-tunable optomechanical lattices

Lang Liu, Yi-Ping Wang
PDF
导出引用
  • 我们提出一种基于耦合光力系统的一维晶格理论方案,其中由多个腔场模和机械模式组成,通过调控系统的参数,使其获得集体动力学演化规律,来研究其中的拓扑相变和拓扑量子通道。首先,我们通过分析该晶格系统的能谱和边缘态,研究其拓扑特性和拓扑量子通道。其次,基于拓扑绝缘体的散射理论和输入输出关系,研究平均光子数和反射系数相的环绕数,探测系统的拓扑边缘态和拓扑不变量。另外,考虑无序缺陷对拓扑特性的影响,发现系统受拓扑的保护,使边缘态对其具有鲁棒性;但无序和微扰大于能隙时,边态模和不变量会发生改变。该理论研究结果,可以应用于量子通信和量子信息处理中。
    We propose a one-dimensional lattice theory scheme based on a coupled optomechanical system consisting of multiple cavity field modes and mechanical modes, where their frequencies can be tuned. In this system, by manipulating parameters to obtain collective dynamical evolution of the system, we study topological properties and topological quantum channels in the system. Firstly, the topological insulator properties and topological quantum channels of the system are studied by modulating the periodic coupling parameters of the system and analyzing the characteristics of the energy spectrum and edge states of the system. It is found that edge state distributions can exhibit flipping processes, which can be applied to quantum information processing. Secondly, based on the scattering theory of topological insulators and the relationship between input and output, the variation characteristics of the steady-state average photon number of the cavity field and the winding number of the reflection coefficient phase are analyzed. It is found that the dissipation of the cavity field has a certain influence on the locality of the distribution of the average photon number in the lattice, and it also indirectly explains the locality of the edge states of the system, and the topological invariants are detected by the winding number. In addition, considering the effect of disordered defects on topological properties, we further analyze their effects on the energy spectrum of the system, the winding number of the reflection coefficient phase and the average photon number of the cavity field. It is found that two defects in the system cause different physical effects, and when their values are small, the edge states of the system are robust to it, which also shows that the system has the characteristics of topological protection. However, when disorder and perturbation are larger than the energy gap, the topological properties of the system will be annihilated, so that the edge states will be indistinguishable, and the topological invariants will change at the same time. The research results of this system can be generalized to other types of models and can be applied to quantum communication and quantum information processing, which will have certain constructive suggestions for the development of future quantum technology.
  • [1]

    Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653

    [2]

    Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys 86 1391

    [3]

    Liu Y L, Wang C, Zhang J and Liu Y X 2018 Chin. Phys. B 27 024204.

    [4]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520

    [5]

    You J Q, Nori F 2011 Nature 474 589

    [6]

    Martin I, Shnirman A, Lin T and Zoller P 2004 Phys. Rev. B 69 125339

    [7]

    Xiao Y, Yu Y F and Zhang Z M 2014 Opt. express 2217979

    [8]

    Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Laser Phys. Lett. 16 015205

    [9]

    Wei W Y, Yu Y F and Zhang Z M 2018 Chin. Phys. B 27 034204

    [10]

    Huang S M and Agarwal G S 2010 Phys. Rev. A 81 033830

    [11]

    Zhang Z C, Wang Y P, Yu Y F and Zhang Z M 2019 Ann.Phys. 531 1800461

    [12]

    Wang K, Yu Y F and Zhang Z M 2019 Phys. Rev. A 100 053832

    [13]

    Li J, Yu R, Ding C and Wu Y 2014 Opt. Express 22 15024

    [14]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169.

    [15]

    Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2018 J. Phys. B:At. Mol. Opt. Phys. 51 175504.

    [16]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H,Hakonen P J, Sillanpää M A 2011 Nature 480 351

    [17]

    Wang Y P, Zhang Z C, Yu Y F and Zhang Z M 2019 Chin. Phys. B 28 379

    [18]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204

    [19]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys 83 1057

    [20]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys 82 3045

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys 88 021004

    [22]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys 88 035005

    [23]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606

    [24]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111

    [25]

    Li L, Chen S 2015 Phys. Rev. B 92 085118

    [26]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638

    [27]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635

    [28]

    Wray L A, Xu v, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys 7 32

    [29]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118

    [30]

    Berg E, Dalla Torre E G, Giamarchi T, Altman E 2008 Phys. Rev. B 77 245119

    [31]

    Chitov G Y 2018 Phys. Rev. B 97 085131

    [32]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418

    [33]

    Feng X Y, Zhang G M, Xiang T 2007 Phys. Rev. Lett 98 087204

    [34]

    Roque T F, Peano V, Yevtushenko O M and Marquardt F 2017 New J. Phys 19 013006

    [35]

    Wan L L, Lü X Y, Gao J H and Wu Y 2017 Opt. Express 25 017364

    [36]

    Qi L, Yan Y, Wang G L, Zhang S and Wang H F 2019 Phys. Rev. B 100 062323

    [37]

    Xu X W, Zhao Y J, Wang H, Chen A X and Liu Y X 2022 Front. Phys. 10 3389

    [38]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C and Zhu S L 2016 Quantum Sci. Technol 1 015006

    [39]

    Walls D F and Milburn G J 2008 Quantum Optics (Berlin:Springer)

    [40]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 821155

  • [1] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, doi: 10.7498/aps.71.20212324
    [2] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, doi: 10.7498/aps.71.20220100
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, doi: 10.7498/aps.71.20212038
    [4] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, doi: 10.7498/aps.71.20220675
    [5] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, doi: 10.7498/aps.68.20190462
    [6] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, doi: 10.7498/aps.67.20180845
    [7] 张卫锋, 李春艳, 陈险峰, 黄长明, 叶芳伟. 时间反演对称性破缺系统中的拓扑零能模. 物理学报, doi: 10.7498/aps.66.220201
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, doi: 10.7498/aps.66.244205
    [9] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, doi: 10.7498/aps.64.097302
    [10] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, doi: 10.7498/aps.63.060301
    [11] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, doi: 10.7498/aps.63.110303
    [12] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, doi: 10.7498/aps.63.030301
    [13] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, doi: 10.7498/aps.63.184203
    [14] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, doi: 10.7498/aps.62.200302
    [15] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, doi: 10.7498/aps.61.210302
    [16] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, doi: 10.7498/aps.60.100301
    [17] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, doi: 10.7498/aps.58.722
    [18] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, doi: 10.7498/aps.53.4070
    [19] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, doi: 10.7498/aps.52.692
    [20] 嵇英华, 雷敏生, 谢芳森, 熊小华. 脉冲信号作用下介观LC电路的量子效应. 物理学报, doi: 10.7498/aps.50.1163
计量
  • 文章访问数:  137
  • PDF下载量:  10
  • 被引次数: 0
出版历程

基于可调频光力晶格中声子-光子拓扑性质的模拟和探测

  • 理学院, 西北农林科技大学, 杨凌 712100

摘要: 我们提出一种基于耦合光力系统的一维晶格理论方案,其中由多个腔场模和机械模式组成,通过调控系统的参数,使其获得集体动力学演化规律,来研究其中的拓扑相变和拓扑量子通道。首先,我们通过分析该晶格系统的能谱和边缘态,研究其拓扑特性和拓扑量子通道。其次,基于拓扑绝缘体的散射理论和输入输出关系,研究平均光子数和反射系数相的环绕数,探测系统的拓扑边缘态和拓扑不变量。另外,考虑无序缺陷对拓扑特性的影响,发现系统受拓扑的保护,使边缘态对其具有鲁棒性;但无序和微扰大于能隙时,边态模和不变量会发生改变。该理论研究结果,可以应用于量子通信和量子信息处理中。

English Abstract

目录

    /

    返回文章
    返回