搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学

赵文丽 王永刚 张路路 岳大光 孟庆田

引用本文:
Citation:

基于新CH2(${\tilde {\bf{X}}{}^3}{\bf{A''}}$)势能面的${\bf C}{\bf({}^3}{\bf{P})} + {\bf{H}_2(}{\bf X^1}\Sigma _{\bf g}^ + {\bf )} $ $ \to {\bf H({}^2}{\bf S}) + {\bf CH}{(\bf{}^2}\Pi ) $反应量子波包动力学

赵文丽, 王永刚, 张路路, 岳大光, 孟庆田

Wave packet quantum dynamics of ${\bf{C}}{(^3}{\bf{P}}) + {{\bf{H}}_2}({{\bf{X}}^1} \Sigma _{\bf{g}}^ + ) $ $ \to {\bf{H}}{(^2}{\bf{S}}) + {\bf{CH}}{(^2} \Pi ) $ reaction based on new CH2(${\tilde {\bf X}{}^3}\bf A''$) surface

Zhao Wen-Li, Wang Yong-Gang, Zhang Lu-Lu, Yue Da-Guang, Meng Qing-Tian
PDF
HTML
导出引用
  • 基于一个最新的CH2$(\tilde{\rm X}{}^3 {\rm A''})$势能面, 运用切比雪夫波包方法对初始态为($\nu = 0{\rm{ }},j = 0$)的$ {\rm{C}}\left( {^3{\rm{P}}} \right) + $$ {\rm H}_2 ({\rm X}^1\Sigma^+_{\rm g}) \to {\rm H} ({}^2{\rm S}) + {\rm CH}({}^2\Pi)$反应体系在1.0—2.0 eV 的碰撞能量范围内进行了动力学研究. 通过对角动量量子数J = 60以下的所有分波进行计算, 得到了反应几率、积分散射截面和速率常数. 计算中用到了耦合态近似方法和考虑科里奥利耦合效应的精确量子方法. 通过对比发现, 随着角动量量子数以及能量的增加, 科里奥利耦合效应的影响越发显著, 因而对于该反应体系, 科里奥利耦合效应不可忽略. 本文计算所得的积分散射截面和速率常数尚无实验数据可以比较, 对该反应的后续研究有一定的参考价值.
    The C(3P) + H2 → CH+H reaction in a collision energy range of 1.0–2.0 eV with the initial state $\nu = 0{\rm{ }},j = 0$ is investigated based on the new potential energy surface (PES) by using the Chebyshev wave packet method. All partial wave contributions up to J = 60 are calculated explicitly by the coupled state (CS) approximation method and the Coriolis coupling (CC) effect. Dynamic properties such as reaction probabilities, integral cross sections, and state specific rate constants are calculated. The calculated probabilities and integral reaction cross sections display an increasing trend with the increase of the collision energy and an oscillatory structure due to the CH2 well on the reaction path. The thermal rate constants of the endoergic reaction with a temperature ranging from 1000 K to 2000 K are obtained also. The calculated rate constants increase in the entire temperature range, showing a sharp T dependence in a range of 1400–2000 K. The rate constants are sensitive to the temperature due to the high threshold of the title reaction. In addition, the results of the exact calculations including CC effect are compared with those from the CS approximation. For smaller J, the CS probabilities are larger than the CC results, while for larger J, they are smaller than the CC ones. For reaction cross sections and rate constants, the CS results and the CC ones are in good agreement with each other at lower energy. However, they turn different at higher energy. The comparison between the CC and CS results indicates that neglecting the Coriolis coupling leads the cross sections and the rate constants to be underestimated due to the formation of a CH2 complex supported by stationary point of CH2(${\tilde{\rm X}}{}^3 \rm A''$) PES. It is suggested that the CH2 complex plays an important role in the process of the title reaction. However, it seems to overestimate the CS and CC rate constants because the barrier recrossing is neglected. Unfortunately, the results obtained in the present work have no corresponding theoretical or experimental data to be compared with, therefore these results provide simply a certain reference significance to the follow-up study of the title reaction.
      通信作者: 孟庆田, qtmeng@sdnu.edu.cn
    • 基金项目: 国家级-超冷原子-分子碰撞及其光缔合的量子立体动力学研究(11674198)
      Corresponding author: Meng Qing-Tian, qtmeng@sdnu.edu.cn
    [1]

    Bockhorn H, Galdo N, Herbertz H A, Fetting F 1971 Combust. Sci. Technol. 2 329Google Scholar

    [2]

    Flower D R, Pineau des Foreêts G 1998 Mon. Not. R. Astron. Soc. 297 1182Google Scholar

    [3]

    Bucher M E, Glinski R J 1999 Mon. Not. R. Astron. Soc. 308 29Google Scholar

    [4]

    Bearda R A, vanHemert M C, vanDishoeck E F 1992 J. Chem. Phys. 97 8240Google Scholar

    [5]

    Scott D C, De Juan, J, Robie D C, Schwartz-Lavi D, Reisler H 1992 J. Phys. Chem. 96 2509Google Scholar

    [6]

    Jursich G M, Wiesenfeld J R 1985 J. Chem. Phys. 83 910Google Scholar

    [7]

    Mikulecky K, Gericke K H 1993 J. Chem. Phys. 98 1244Google Scholar

    [8]

    Bussery-Honvault B, Honvault P, Launay J M 2001 J. Chem. Phys. 115 10701Google Scholar

    [9]

    Bussery-Honvault B, Julien J, Honvault P, Launay J M 2005 Phys. Chem. Chem. Phys. 7 1476Google Scholar

    [10]

    Joseph S, Varandas A J C 2009 J. Phys. Chem. A 113 4175Google Scholar

    [11]

    Zhang C F, Fu M K, Shen Z T, Ma H T, Bian W S 2014 J. Chem. Phys. 140 234301Google Scholar

    [12]

    Lin S Y, Guo H 2004 J. Phys. Chem. A 108 2141Google Scholar

    [13]

    Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306Google Scholar

    [14]

    Lu R F, Wang Y H, Deng K M 2013 J. Comput. Chem. 34 1735Google Scholar

    [15]

    Joseph S, Caridade P J S B, Varandas A J C 2011 J. Phys. Chem. A 115 7882Google Scholar

    [16]

    Wu Y, Zhang C F, Cao J W, Bian W S 2014 J. Phys. Chem. A 118 4235Google Scholar

    [17]

    Shen Z T, Cao J W, Bian W S 2015 J. Chem. Phys. 142 164309Google Scholar

    [18]

    Hickson K M, Suleimanov Y V 2017 Phys. Chem. Chem. Phys. 19 480Google Scholar

    [19]

    González-Lezana T, Larrégaray P, Bonnet L, Wu Y N, Bian W S 2018 J. Chem. Phys. 148 234305Google Scholar

    [20]

    Knowles P, Handy N C, Carter S 1983 Mol. Phys. 49 681Google Scholar

    [21]

    Murrell J, Dunne L 1983 Chem. Phys. Lett. 102 155Google Scholar

    [22]

    Harding L B, Guadagnini R, Schatz G C 1993 J. Phys. Chem. 97 5472Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    van Harrevelt R, Van Hemert M C, Schatz G C 2002 J. Chem. Phys. 116 6002Google Scholar

    [26]

    Gamallo P, Defazio P, Akpinar S, Petrongolo C 2012 J. Phys. Chem. A 116 8291Google Scholar

    [27]

    Guadagnini R, Schatz G C 1996 J. Phys. Chem. 100 18944Google Scholar

    [28]

    Scholefield M R, Choi J H, Goyal S, Reisler H 1998 Chem. Phys. Lett. 288 487Google Scholar

    [29]

    Ehbrecht A, Kowalski A, Ottinger Ch 1998 Chem. Phys. Lett. 284 205Google Scholar

    [30]

    Zhang L L, Liu D, Yue D G, Song Y Z, Meng Q T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095202Google Scholar

    [31]

    Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp201–218

    [32]

    Gao F, Wang X L, Zhao W L, Song Y Z, Meng Q T 2018 Eur. Phys. J. D 72 224Google Scholar

    [33]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [34]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [35]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [36]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [37]

    Zhang D H, Zhang J Z H 1994 J. Chem. Phys. 101 1146Google Scholar

    [38]

    Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270Google Scholar

    [39]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [40]

    Lin S Y, Guo H 2006 J. Chem. Phys. 124 031101Google Scholar

    [41]

    Blint R, Newton M 1975 Chem. Phys. Lett. 32 178Google Scholar

    [42]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [43]

    Carroll T E, Goldfield E M 2001 J. Phys. Chem. A 105 2251Google Scholar

    [44]

    Meijer A J H M, Goldeld E M 1999 J. Chem. Phys. 110 870Google Scholar

    [45]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar

    [46]

    Peng Y, Jiang Z A, Chen J S 2017 J. Phys. Chem. A 121 2209Google Scholar

  • 图 1  CH2等势线, 图中等势线间隔为0.1 eV (a) C沿着共线构型靠近H2分子; (b) C 沿着T构型插入H2

    Fig. 1.  Equipotential contour plot for CH2, the contour increments are 0.1 eV: (a) For bond stretching in C-H-H linear geometry; (b) for T-shaped insertion of C into H2 diatoms.

    图 2  90°和180°的最小能量路径

    Fig. 2.  The minimum energy paths as a function of RCH-RHH at 90° and 180°.

    图 3  不同分波的反应几率随着碰撞能量的变化

    Fig. 3.  The reaction probabilities vs. collision energy at different J.

    图 4  CC与CS反应几率比较

    Fig. 4.  Comparisons between the CC and CS probability.

    图 5  C+H2反应的积分散射截面

    Fig. 5.  The integral cross section of the C+H2 reaction.

    图 6  C+H2反应的速率常数

    Fig. 6.  The rate constant of the C+H2 reaction.

    表 1  波包计算中的数值参量(除特殊说明, 均采用原子单位a.u.)

    Table 1.  Parameters used in wave packet calculation (The atomic unit is used in the calculation unless otherwise stated).

    坐标取值范围
    和基组数
    $R \in ({10^{{\rm{ - }}16}}, \, 16)$, $({N_R} = 203)$
    $r \in (0.5, \, 12)$, $({N_r} = 99)$
    $\gamma \in ({90^ \circ }, \, {180^ \circ })$, $({N_\gamma } = 50)$
    吸收势${R_{\rm{d}}} = 11.0$, ${d_R} = 0.0006$
    ${r_{\rm{d}}} = 7.5$, ${d_r} = 0.001$
    初始波包${R_0} = 8.0$, ${E_0} = 1.55\;{\rm{ eV}}$, $\delta = 0.3$
    光谱控制0.5
    流计算的位置${r_{\rm{f}}} = 7.4$
    传播步数100000
    下载: 导出CSV
  • [1]

    Bockhorn H, Galdo N, Herbertz H A, Fetting F 1971 Combust. Sci. Technol. 2 329Google Scholar

    [2]

    Flower D R, Pineau des Foreêts G 1998 Mon. Not. R. Astron. Soc. 297 1182Google Scholar

    [3]

    Bucher M E, Glinski R J 1999 Mon. Not. R. Astron. Soc. 308 29Google Scholar

    [4]

    Bearda R A, vanHemert M C, vanDishoeck E F 1992 J. Chem. Phys. 97 8240Google Scholar

    [5]

    Scott D C, De Juan, J, Robie D C, Schwartz-Lavi D, Reisler H 1992 J. Phys. Chem. 96 2509Google Scholar

    [6]

    Jursich G M, Wiesenfeld J R 1985 J. Chem. Phys. 83 910Google Scholar

    [7]

    Mikulecky K, Gericke K H 1993 J. Chem. Phys. 98 1244Google Scholar

    [8]

    Bussery-Honvault B, Honvault P, Launay J M 2001 J. Chem. Phys. 115 10701Google Scholar

    [9]

    Bussery-Honvault B, Julien J, Honvault P, Launay J M 2005 Phys. Chem. Chem. Phys. 7 1476Google Scholar

    [10]

    Joseph S, Varandas A J C 2009 J. Phys. Chem. A 113 4175Google Scholar

    [11]

    Zhang C F, Fu M K, Shen Z T, Ma H T, Bian W S 2014 J. Chem. Phys. 140 234301Google Scholar

    [12]

    Lin S Y, Guo H 2004 J. Phys. Chem. A 108 2141Google Scholar

    [13]

    Sun Z P, Zhang C F, Lin S Y, Zheng Y J, Meng Q T, Bian W S 2013 J. Chem. Phys. 139 014306Google Scholar

    [14]

    Lu R F, Wang Y H, Deng K M 2013 J. Comput. Chem. 34 1735Google Scholar

    [15]

    Joseph S, Caridade P J S B, Varandas A J C 2011 J. Phys. Chem. A 115 7882Google Scholar

    [16]

    Wu Y, Zhang C F, Cao J W, Bian W S 2014 J. Phys. Chem. A 118 4235Google Scholar

    [17]

    Shen Z T, Cao J W, Bian W S 2015 J. Chem. Phys. 142 164309Google Scholar

    [18]

    Hickson K M, Suleimanov Y V 2017 Phys. Chem. Chem. Phys. 19 480Google Scholar

    [19]

    González-Lezana T, Larrégaray P, Bonnet L, Wu Y N, Bian W S 2018 J. Chem. Phys. 148 234305Google Scholar

    [20]

    Knowles P, Handy N C, Carter S 1983 Mol. Phys. 49 681Google Scholar

    [21]

    Murrell J, Dunne L 1983 Chem. Phys. Lett. 102 155Google Scholar

    [22]

    Harding L B, Guadagnini R, Schatz G C 1993 J. Phys. Chem. 97 5472Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    van Harrevelt R, Van Hemert M C, Schatz G C 2002 J. Chem. Phys. 116 6002Google Scholar

    [26]

    Gamallo P, Defazio P, Akpinar S, Petrongolo C 2012 J. Phys. Chem. A 116 8291Google Scholar

    [27]

    Guadagnini R, Schatz G C 1996 J. Phys. Chem. 100 18944Google Scholar

    [28]

    Scholefield M R, Choi J H, Goyal S, Reisler H 1998 Chem. Phys. Lett. 288 487Google Scholar

    [29]

    Ehbrecht A, Kowalski A, Ottinger Ch 1998 Chem. Phys. Lett. 284 205Google Scholar

    [30]

    Zhang L L, Liu D, Yue D G, Song Y Z, Meng Q T 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095202Google Scholar

    [31]

    Zhang J Z H 1999 Theory and Application of Quantum Molecular Dynamics (Singapore: World Scientific) pp201–218

    [32]

    Gao F, Wang X L, Zhao W L, Song Y Z, Meng Q T 2018 Eur. Phys. J. D 72 224Google Scholar

    [33]

    Gao F, Zhang L L, Zhao W L, Meng Q T, Song Y Z 2019 J. Chem. Phys. 150 224304Google Scholar

    [34]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 102 7390Google Scholar

    [35]

    Mandelshtam V A, Taylor H S 1995 J. Chem. Phys. 103 2903Google Scholar

    [36]

    Tal-Ezer H, Kosloff R 1984 J. Chem. Phys. 81 3967Google Scholar

    [37]

    Zhang D H, Zhang J Z H 1994 J. Chem. Phys. 101 1146Google Scholar

    [38]

    Meijer A J H M, Goldfield E M, Gray S K, Balint-Kurti G G 1998 Chem. Phys. Lett. 293 270Google Scholar

    [39]

    Althorpe S C 2001 J. Chem. Phys. 114 1601Google Scholar

    [40]

    Lin S Y, Guo H 2006 J. Chem. Phys. 124 031101Google Scholar

    [41]

    Blint R, Newton M 1975 Chem. Phys. Lett. 32 178Google Scholar

    [42]

    Zhai H C, Lin S Y 2015 Chem. Phys. 455 57Google Scholar

    [43]

    Carroll T E, Goldfield E M 2001 J. Phys. Chem. A 105 2251Google Scholar

    [44]

    Meijer A J H M, Goldeld E M 1999 J. Chem. Phys. 110 870Google Scholar

    [45]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431Google Scholar

    [46]

    Peng Y, Jiang Z A, Chen J S 2017 J. Phys. Chem. A 121 2209Google Scholar

计量
  • 文章访问数:  4554
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-18
  • 修回日期:  2020-02-20
  • 刊出日期:  2020-04-20

/

返回文章
返回