搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究

陈光平 杨金妮 乔昌兵 黄陆君 虞静

引用本文:
Citation:

Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究

陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静

First-principles calculations of local structure and electronic properties of Er3+-doped TiO2

Chen Guang-Ping, Yang Jin-Ni, Qiao Chang-Bing, Huang Lu-Jun, Yu Jing
PDF
HTML
导出引用
  • 三价稀土铒离子(Er3+)掺杂二氧化钛(TiO2)因其优异的光电性能, 在众多稀土掺杂发光晶体材料中脱颖而出, 具有非常广泛的应用前景. 利用CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization)结构搜索方法和第一性原理计算, 成功地预测和探究了三价铒离子掺杂二氧化钛(Er3+:TiO2)晶体的基态结构. 首次报道Er3+掺杂TiO2的最低能量结构具有$P\overline 4 m2$空间对称性. 当Er3+离子掺杂基质晶体时, Er3+离子占据Ti4+离子的位置, 并造成结构畸变, 最终使得Er3+离子的局域对称性由D2d降低为C2v. 通过电子结构计算发现Er3+掺杂TiO2的能带隙值约为2.27 eV, 这表明Er3+离子的掺杂会导致体系的带隙值降低, 但没有改变其半导体性质, 从而在光伏电池和半导体激光器等领域具有更广泛的应用. 这些发现不仅为进一步探索Er3+:TiO2晶体的性质和应用提供了数据参考, 也为探究其他稀土掺杂晶体材料提供了最新的方法.
    Trivalent rare earth erbium ion (Er3+) doped titanium oxide (TiO2) can possess a very wide range of applications due to its excellent optoelectronic properties, thus standing out among many rare-earth-doped luminescent crystals. However, the issues regarding local structure and electronic properties have not been finalized. To address these problems, the CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) method combined with the first-principles calculations is employed, and many converged structures of Er3+-doped TiO2 are successfully obtained. Further structural optimization is performed by using the VASP (Vienna ab initio simulation package) software package, and we report for the first time that the lowest energy structure of Er3+-doped TiO2 has the $ P\overline 4 $m2 symmetry. It can be observed that the doped Er3+ ions enter into the host crystal and occupy the positions of Ti4+ ions, resulting in structural distortion, which eventually leads the local Er3+ coordination site symmetry to reduce from D2d into C2v. We speculate that there are two reasons: 1) the difference in charge between Er3+ ions and Ti4+ ions leads to charge compensation; 2) the difference between their electron radii is obvious: the radius is 0.0881 for Er3+ ion and 0.0881 for Ti4+ ion. In addition, during the structural search, we also find many metastable structures that may exist at a special temperature or pressure, which play an important role in the studying of structural evolution. When the electronic band structure of the Er3+-doped TiO2 system is calculated, we adopt the method of local density approximation (LDA) combined with the on-site Coulomb repulsion parameter U to accurately describe the strongly correlated system. For the specific value of U, we adopt 3.5 eV and 7.6 eV to describe the strong correlation of 3d electrons of Ti4+ ions and 4f electrons of Er3+ ions, respectively. According to the calculation of electronic properties, the band gap value of Er3+ doped TiO2 is about 2.27 eV, which is lower than that of the host crystal (Eg = 2.40 eV). The results show that the reduction in the band gap is mainly caused by the f state of Er3+ ions. The doping of Er ion does reduce the band gap value, but it does not change the conductivity of the system, which have great application prospect in diode-pumped laser. These findings not only provide the data for further exploring the properties and applications of Er3+:TiO2 crystals, but also present an approach to studying other rare-earth-doped crystalline materials.
      通信作者: 陈光平, chengp205@126.com
    • 基金项目: 国家自然科学基金(批准号: 12075163, 12175129, 11775253, 12175027, 11875010)和四川文理学院科学基金(批准号: 2018SCL008Y)资助的课题.
      Corresponding author: Chen Guang-Ping, chengp205@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075163, 12175129, 11775253, 12175027, 11875010) and the Science Foundation of Sichuan Arts and Science University, China (Grant No. 2018SCL008Y)
    [1]

    钟淑琳, 仇家豪, 罗文崴, 吴木生 2021 物理学报 70 158203Google Scholar

    Zhong S L, Qiu J H, Luo W W, Wu M S 2021 Acta Phys. Sin. 70 158203Google Scholar

    [2]

    孟勇军, 李洪, 唐建伟, 陈学文 2022 物理学报 71 027801Google Scholar

    Meng Y J, Li H, Tang J W, Chen X W 2022 Acta Phys. Sin. 71 027801Google Scholar

    [3]

    Wu B, Zhao L, Wang Y, Dong H, Yu H 2019 RSC Adv. 9 42228Google Scholar

    [4]

    Menezes L D S, Araújo C B D 2015 J. Braz. Chem. Soc. 26 2405

    [5]

    Stengl V, Bakardjieva S, Murafa N 2009 Mater. Chem. Phys. 114 217Google Scholar

    [6]

    Hassan M S, Amna T, Yang O B, Kim H C, Khil M S 2012 Ceram. Int. 38 5925Google Scholar

    [7]

    Borlaf M, Colomer M T, Moreno R, Ortiz A L 2014 J. Eur. Ceram. Soc. 34 4457Google Scholar

    [8]

    Bao R, Li R, Chen C, Wu H, Xia J, Long C, Li H 2019 J. Phys. Chem. Solid. 126 78Google Scholar

    [9]

    Li J G, Wang X H, Kamiyama H, Ishigaki T, Sekiguchi T 2006 Thin Solid Films 506 292

    [10]

    Agrios A G, Pochat P 2005 J. Appl. Electrochem. 35 655Google Scholar

    [11]

    Camps I, Borlaf M, Toudert J, Andres A D, Colomer M T, Moreno R, Serna R 2018 J. Alloys Compd. 735 2267Google Scholar

    [12]

    Talane T E 2018 M. S. Thesis (Gauteng Province: University of South Africa)

    [13]

    Pablo L I, Laeticia P, Jonathan M, Davide J, Nadia G B, Diego P, Sonia F, Chiara N, Fabrizio G, Daniel M 2017 J. Non-Cryst. Solids 460 161Google Scholar

    [14]

    Mignotte C 2004 Appl. Surf. Sci. 226 355Google Scholar

    [15]

    Talane T E, Mbule P S, Noto L L, Shingange K, Mhlongo G H, Mothudi B M, Dhlamini M S 2018 Mater. Res. Bull. 108 234Google Scholar

    [16]

    Wild J D, Meijerink A, Rath J K, van Sark W G J H M, Schropp R E I 2011 Energy Environ. Sci. 4 4835Google Scholar

    [17]

    Pablo L I, Diego P, Nadia G B, Davide J, Giovanni B, Laeticia P, Daniel M 2018 Nanomaterials 8 20Google Scholar

    [18]

    van den Hoven G N, Koper R J I M, Polman A, Dam C V, Uffelen J W M V, Smit M K 1996 Appl. Phys. Lett. 68 1886Google Scholar

    [19]

    Jia C W, Zhao J G, Duan H G, Xie E Q 2007 Mater. Lett. 61 4389Google Scholar

    [20]

    Fu C Y, Liao J S, Luo W Q, Li R F, Chen X Y 2008 Opt. Lett. 33 953Google Scholar

    [21]

    Luo W Q, Fu C Y, Li R F, Liu Y S, Zhu H M, Chen X Y 2011 Small 7 3046Google Scholar

    [22]

    Ren Z, Wu J, Wang N, Li X 2018 J. Mater. Chem. A 6 15348Google Scholar

    [23]

    Mazierski P, Mikolajczyk A, Grzybd T, Caicedo P N A, Wei Z, Kowalska E, Henry P P, Adriana Z M, Nadolna J 2020 Appl. Surf. Sci. 527 146815Google Scholar

    [24]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [25]

    Wang Y C, Lv J, Zhu L, Lu S H, Yin K T, Li Q, Wang H, Zhang L J, Ma Y M 2015 J. Phys. Condens. Matter. 27 203203Google Scholar

    [26]

    Wang H, Wang Y C, Lv J, Li Q, Zhang L J, Ma Y M 2016 Comput. Mater. Sci. 112 406Google Scholar

    [27]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [28]

    Gao B, Gao P, Lu S, Lv J, Wang Y, Ma Y 2019 Sci. Bull. 64 301Google Scholar

    [29]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [30]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Sanna S, Schmidt W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120Google Scholar

    [34]

    Xiao Y, Ju M, Yuan H K, Yeung Y Y 2021 J. Phys. Chem. C 125 18015Google Scholar

    [35]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [36]

    Phenicie C M, Stevenson P, Welinski S, Rose B C, Asfaw A T, Cava R J, Lyon S A, de Leon N P, Thompson J D 2019 Nano Lett. 19 8928Google Scholar

    [37]

    Mills A, Hunte S L 1997 J. Photochem. Photobiol. A 108 1Google Scholar

    [38]

    Yang J, Hu Y, Jin C, Zhuge L, Wu X 2017 Thin Solid Films 637 9Google Scholar

    [39]

    Pan L, Xiao Y, Kuang X Y, Ju M 2021 Mater. Chem. Phys. 257 123824Google Scholar

    [40]

    Savin A, Nesper R, Wengert S, Fässler T F 1997 Angew. Chem. Int. Ed. Engl. 36 1808Google Scholar

    [41]

    Lu T, Chen F 2011 Acta Phys. Chim. Sin. 27 2786Google Scholar

    [42]

    Fuentealba P, Chamorro E, Santos J C 2007 Theoretical Aspects of Chemical Reactivity 19 57

  • 图 1  通过CALYPSO结构搜索法确定纯TiO2 (a)和Er3+掺杂TiO2 (b)的晶体结构

    Fig. 1.  Crystal structures of the pure TiO2 (a) and Er3+-doped TiO2 (b) by the CALYPSO structure search method.

    图 2  Er3+:TiO2晶体的亚稳态结构

    Fig. 2.  Coordination structures of the metastable for Er3+:TiO2.

    图 3  模拟的(a) TiO2和(b) Er3+掺杂TiO2的XRD图, 并与实验值进行对比

    Fig. 3.  Simulated X-ray diffraction patterns of (a) TiO2 and (b) Er3+-doped TiO2 compared with experimental data.

    图 4  计算的(a) TiO2和(b) Er3+掺杂TiO2的声子谱

    Fig. 4.  Calculated phonon spectra of the (a) TiO2 and (b) Er3+-doped TiO2.

    图 5  采用LDA方法计算的(a) TiO2和(b) Er3+掺杂TiO2的能带结构和态密度

    Fig. 5.  Band structures and the DOS of (a) TiO2 and (b) Er3+-doped TiO2, all calculated by the LDA method.

    图 6  计算得到的Er3+:TiO2电子局域函数 (a)基态结构; (b) (010)平面

    Fig. 6.  Electron localized function of the Er3+:TiO2: (a) Ground-state structure; (b) (010) plane.

    表 1  Er3+:TiO2能量最低结构中所有原子的坐标

    Table 1.  Coordinates of all atoms for the low-energy structure of Er3+:TiO2.

    AtomxyzWyckoff site
    symmetry
    O(1)0.2470.2490.2044j
    O(2)0.7530.7510.2044k
    O(3)0.2490.7530.7962g
    O(4)0.7510.2470.7968l
    O(6)0.7530.2490.2042g
    O(7)0.2500.2470.7964k
    O(8)0.7510.7530.7964j
    O(11)0.2500.0000.5452f
    O(19)0.5000.7530.0362e
    Ti(1)0.0000.2500.2514j
    Ti(2)0.0000.7500.2514k
    Ti(3)0.2500.0000.7492g
    Ti(4)0.7500.0000.7494h
    Ti(10)0.5000.0000.4951d
    Er(1)0.5000.5000.5001c
    下载: 导出CSV

    表 2  Er3+:TiO2的基态结构以及亚稳态结构的晶格参数a, b, c, 原胞体积V, 相对能量∆E

    Table 2.  Structural parameters a, b and c, unit-cell volume, relative energies for the optimized TiO2 and metastable Er3+:TiO2

    Space groupabcV3E/eV
    TiO2I41/amd7.5687.5689.515545.003
    Er3+:TiO2$ P\overline 4 $m27.6827.6829.798578.1930
    Isomer (a)$ P\overline 4 $m27.6817.6819.799578.2130.051
    Isomer (b)Cmmm13.25813.2586.0131051.7640.853
    Isomer (c)Cmmm13.26113.2616.0091051.9880.975
    下载: 导出CSV
  • [1]

    钟淑琳, 仇家豪, 罗文崴, 吴木生 2021 物理学报 70 158203Google Scholar

    Zhong S L, Qiu J H, Luo W W, Wu M S 2021 Acta Phys. Sin. 70 158203Google Scholar

    [2]

    孟勇军, 李洪, 唐建伟, 陈学文 2022 物理学报 71 027801Google Scholar

    Meng Y J, Li H, Tang J W, Chen X W 2022 Acta Phys. Sin. 71 027801Google Scholar

    [3]

    Wu B, Zhao L, Wang Y, Dong H, Yu H 2019 RSC Adv. 9 42228Google Scholar

    [4]

    Menezes L D S, Araújo C B D 2015 J. Braz. Chem. Soc. 26 2405

    [5]

    Stengl V, Bakardjieva S, Murafa N 2009 Mater. Chem. Phys. 114 217Google Scholar

    [6]

    Hassan M S, Amna T, Yang O B, Kim H C, Khil M S 2012 Ceram. Int. 38 5925Google Scholar

    [7]

    Borlaf M, Colomer M T, Moreno R, Ortiz A L 2014 J. Eur. Ceram. Soc. 34 4457Google Scholar

    [8]

    Bao R, Li R, Chen C, Wu H, Xia J, Long C, Li H 2019 J. Phys. Chem. Solid. 126 78Google Scholar

    [9]

    Li J G, Wang X H, Kamiyama H, Ishigaki T, Sekiguchi T 2006 Thin Solid Films 506 292

    [10]

    Agrios A G, Pochat P 2005 J. Appl. Electrochem. 35 655Google Scholar

    [11]

    Camps I, Borlaf M, Toudert J, Andres A D, Colomer M T, Moreno R, Serna R 2018 J. Alloys Compd. 735 2267Google Scholar

    [12]

    Talane T E 2018 M. S. Thesis (Gauteng Province: University of South Africa)

    [13]

    Pablo L I, Laeticia P, Jonathan M, Davide J, Nadia G B, Diego P, Sonia F, Chiara N, Fabrizio G, Daniel M 2017 J. Non-Cryst. Solids 460 161Google Scholar

    [14]

    Mignotte C 2004 Appl. Surf. Sci. 226 355Google Scholar

    [15]

    Talane T E, Mbule P S, Noto L L, Shingange K, Mhlongo G H, Mothudi B M, Dhlamini M S 2018 Mater. Res. Bull. 108 234Google Scholar

    [16]

    Wild J D, Meijerink A, Rath J K, van Sark W G J H M, Schropp R E I 2011 Energy Environ. Sci. 4 4835Google Scholar

    [17]

    Pablo L I, Diego P, Nadia G B, Davide J, Giovanni B, Laeticia P, Daniel M 2018 Nanomaterials 8 20Google Scholar

    [18]

    van den Hoven G N, Koper R J I M, Polman A, Dam C V, Uffelen J W M V, Smit M K 1996 Appl. Phys. Lett. 68 1886Google Scholar

    [19]

    Jia C W, Zhao J G, Duan H G, Xie E Q 2007 Mater. Lett. 61 4389Google Scholar

    [20]

    Fu C Y, Liao J S, Luo W Q, Li R F, Chen X Y 2008 Opt. Lett. 33 953Google Scholar

    [21]

    Luo W Q, Fu C Y, Li R F, Liu Y S, Zhu H M, Chen X Y 2011 Small 7 3046Google Scholar

    [22]

    Ren Z, Wu J, Wang N, Li X 2018 J. Mater. Chem. A 6 15348Google Scholar

    [23]

    Mazierski P, Mikolajczyk A, Grzybd T, Caicedo P N A, Wei Z, Kowalska E, Henry P P, Adriana Z M, Nadolna J 2020 Appl. Surf. Sci. 527 146815Google Scholar

    [24]

    Wang Y C, Lv J, Zhu L, Ma Y M 2012 Comput. Phys. Commun. 183 2063Google Scholar

    [25]

    Wang Y C, Lv J, Zhu L, Lu S H, Yin K T, Li Q, Wang H, Zhang L J, Ma Y M 2015 J. Phys. Condens. Matter. 27 203203Google Scholar

    [26]

    Wang H, Wang Y C, Lv J, Li Q, Zhang L J, Ma Y M 2016 Comput. Mater. Sci. 112 406Google Scholar

    [27]

    Wang Y C, Lv J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [28]

    Gao B, Gao P, Lu S, Lv J, Wang Y, Ma Y 2019 Sci. Bull. 64 301Google Scholar

    [29]

    Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H, Ma Y 2012 J. Chem. Phys. 137 224108Google Scholar

    [30]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [31]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Sanna S, Schmidt W G, Frauenheim T, Gerstmann U 2009 Phys. Rev. B 80 104120Google Scholar

    [34]

    Xiao Y, Ju M, Yuan H K, Yeung Y Y 2021 J. Phys. Chem. C 125 18015Google Scholar

    [35]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [36]

    Phenicie C M, Stevenson P, Welinski S, Rose B C, Asfaw A T, Cava R J, Lyon S A, de Leon N P, Thompson J D 2019 Nano Lett. 19 8928Google Scholar

    [37]

    Mills A, Hunte S L 1997 J. Photochem. Photobiol. A 108 1Google Scholar

    [38]

    Yang J, Hu Y, Jin C, Zhuge L, Wu X 2017 Thin Solid Films 637 9Google Scholar

    [39]

    Pan L, Xiao Y, Kuang X Y, Ju M 2021 Mater. Chem. Phys. 257 123824Google Scholar

    [40]

    Savin A, Nesper R, Wengert S, Fässler T F 1997 Angew. Chem. Int. Ed. Engl. 36 1808Google Scholar

    [41]

    Lu T, Chen F 2011 Acta Phys. Chim. Sin. 27 2786Google Scholar

    [42]

    Fuentealba P, Chamorro E, Santos J C 2007 Theoretical Aspects of Chemical Reactivity 19 57

  • [1] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [2] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [3] 陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒. Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算. 物理学报, 2015, 64(7): 077104. doi: 10.7498/aps.64.077104
    [4] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [5] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [6] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [7] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究. 物理学报, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [8] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [9] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [10] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [11] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [12] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [13] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [14] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [15] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [17] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [18] 马松华, 方建平, 任清褒. (2+1)维非对称 Nizhnik-Novikov-Veselov系统的新映射解及其局域结构. 物理学报, 2007, 56(12): 6784-6790. doi: 10.7498/aps.56.6784
    [19] 魏 群, 杨子元, 王参军, 许启明. Al2O3:V3+晶体局域结构及其自旋哈密顿参量研究. 物理学报, 2007, 56(4): 2393-2398. doi: 10.7498/aps.56.2393
    [20] 闫文胜, 王文楼, 吴敏昌, 韦世强. 同步辐射XAFS研究高比能LiMn2O4材料的局域结构. 物理学报, 2002, 51(10): 2302-2307. doi: 10.7498/aps.51.2302
计量
  • 文章访问数:  256
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-22
  • 修回日期:  2022-11-14
  • 上网日期:  2022-12-02
  • 刊出日期:  2022-12-24

Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究

  • 1. 四川文理学院智能制造学院, 达州 635000
  • 2. 四川文理学院, 智能制造产业技术研究院, 达州 635000
  • 3. 四川大学原子与分子物理研究所, 成都 610065
  • 通信作者: 陈光平, chengp205@126.com
    基金项目: 国家自然科学基金(批准号: 12075163, 12175129, 11775253, 12175027, 11875010)和四川文理学院科学基金(批准号: 2018SCL008Y)资助的课题.

摘要: 三价稀土铒离子(Er3+)掺杂二氧化钛(TiO2)因其优异的光电性能, 在众多稀土掺杂发光晶体材料中脱颖而出, 具有非常广泛的应用前景. 利用CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization)结构搜索方法和第一性原理计算, 成功地预测和探究了三价铒离子掺杂二氧化钛(Er3+:TiO2)晶体的基态结构. 首次报道Er3+掺杂TiO2的最低能量结构具有$P\overline 4 m2$空间对称性. 当Er3+离子掺杂基质晶体时, Er3+离子占据Ti4+离子的位置, 并造成结构畸变, 最终使得Er3+离子的局域对称性由D2d降低为C2v. 通过电子结构计算发现Er3+掺杂TiO2的能带隙值约为2.27 eV, 这表明Er3+离子的掺杂会导致体系的带隙值降低, 但没有改变其半导体性质, 从而在光伏电池和半导体激光器等领域具有更广泛的应用. 这些发现不仅为进一步探索Er3+:TiO2晶体的性质和应用提供了数据参考, 也为探究其他稀土掺杂晶体材料提供了最新的方法.

English Abstract

    • 稀土掺杂材料一直是研究的热点, 在X射线成像、激光显示器、闪烁体、荧光粉和生物传感器等方面都存在潜在的应用[1-4]. 近年来, 二氧化钛(TiO2)掺杂稀土元素受到长期关注. 二氧化钛具有半导体性质、化学稳定性高、生物相容性好、毒性低、生产简单经济等特点. 它在光致发光、生物医学、光催化等领域有着广泛的应用[5-8]. 特别是在可见光和红外领域, TiO2晶体被认为是一个出色的发光材料: 具有较大的折射率(2.4—2.9)[9], 透光范围广, 带隙宽(锐钛矿为3.2 eV, 金红石为3.0 eV)[10]. 此外, 相对较低的声子能量(<700 cm–1)可以增加辐射跃迁的机会, 使其特别适合加入一些具有光学活性的稀土离子, 如Er3+离子等[11].

      铒是镧系稀土元素中的一种, 其基态电子构型为[Xe]4f126s2, 因此铒在失去两个6s电子和一个4f电子后成为[Xe]4f11的电子构型[12]. 由于Er3+离子能发出1540 nm的激光, 使得Er3+:TiO2体系在平面光波导、激光器和电信光纤放大器中都能成功地应用[13,14]. 此外, 在众多稀土离子中, 只有Er3+和Tm3+等少数离子是可以获得上转换发光[15], 当Er3+离子加入到主晶体材料后, 两个近红外光子被转化为一个可见光子, 并发生上转换过程[12,16]. 稀土Er3+离子所产生的绿色和红色上转换发光获得持续关注, 也诞生了诸多全新的应用, 如固态激光器、医疗诊断、显示技术和光伏电池等[17,18].

      长期以来, 掺杂Er3+的TiO2晶体的结构和应用一直是热门话题. 早在2007年, Jia等[19]通过静电纺丝法在528.1, 566.6和669.3 nm处发现了Er3+掺杂TiO22H11/24I15/2, 4S3/24I15/24F9/24I15/2的可见光谱, 发光强度随退火温度的升高而增大. Fu等[20]和Luo等[21]分别于2008年和2011年报道了在TiO2晶体中Er3+离子成功取代具有D2d局部对称性的Ti4+离子. 由于Ti4+和Er3+的离子半径和电荷数存在差异, 晶体中的Er3+离子局部对称性比D2d更低[20,21]. 此外, Luo等[21]也证实了Er3+离子的C2v点群对称是锐钛矿材料中最合理的局部对称性. 2018年, Talane等[15]通过溶胶-凝胶法发现, 随着掺杂浓度的增大, Er3+掺杂TiO2材料的晶粒尺寸发生了明显变化, 这可能是由于掺杂离子的加入产生了内部应变. 在980 nm近红外光的激发下, 当Er3+离子掺杂浓度为8% (摩尔百分比)时, 上转换发光强度最高. 同年, Ren等[22]在Er3+:TiO2混合晶体相中发现了一个相结, 可以实现电荷分离, 形成电子传输层, 从而制备出高效钙钛矿太阳能电池. 由此可见, Er3+:TiO2晶体是一种应用广泛的材料, 对其特性的研究仍在持续开展. 2020年, Mazierski等[23]认为观察光催化Vis响应的关键可能是在带隙区域内有Er3+离子产生的新的4f态. 虽然对Er3+掺杂TiO2体系的研究已经很长时间了, 但对杂质引起的微观局域结构及电子性质的变化还没有发现相关的报道. 因此, 本工作通过第一性原理计算研究了掺杂Er3+:TiO2晶体的局域结构和电子性质.

      本文首先采用CALYPSO (crystal structure analysis by particle swarm optimization)方法结合VASP (Vienna ab initio simulation package)软件包进行结构搜索与优化[24-29]. 成功获得了掺Er3+:TiO2的基态结构. 随后, 报道了掺杂Er3+:TiO2体系的能带结构、态密度(DOS)和电子局域函数(ELF). 这些结果为Er3+:TiO2晶体的后续研究和应用提供了支持.

    • 前期研究中本课题组成功地用CALYPSO方法预测了Er3+:TiO2晶体的结构[24-26]. CALYPSO是一种预测结构的方法, 之前的学者已经成功地应用该方法预测了许多体系中的新结构[27-29]. CALYPSO主要是通过粒子群优化(particle swarm optimization, PSO)算法进行结构搜索[24-26], 该方法主要思想是通过个体与群体之间信息共享, 从而快速地搜索整个势能空间, 最终找到全局能量最小值. CALYPSO结构搜索开始时, 晶体结构的对称性会从230个晶体空间群中随机选取, 然后根据选取的这个空间群所属的布拉菲晶格以及体积来确定其晶格参数. 在本文的研究过程中, 首先预测了常温常压下每个模拟晶胞为48个原子的演化单元结构, 并分别预测了纯TiO2和Er3+:TiO2的40代结构, 每代产生30个结构. 然后, 筛选出能量较低的结构, 使用VASP软件包[30-32]以确保找到最稳定的结构. 使用500 eV作为该体系的截断能, 并通过适当的k点将能量聚集到每个原子小于1 meV. 对于Ti, O和Er原子, 分别采用3s23p63d24s2, 2s22p4和4f125s25p66s2的电子模型进行计算. 由于Er3+掺杂TiO2属于强关联体系, 特别是Ti离子的d电子和Er离子的f电子使得电子之间的库仑相互作用不可忽略, 所以在结构优化及结构稳定性判断等过程中都采用了LDA+U的方法, 在计算过程中分别将Ti4+离子和Er3+离子的U值取为3.5 eV[23]和7.6 eV[33,34]. 与此同时, 还利用PHONOPY软件计算了最低能量结构的声子谱[35]来确定其稳定性.

    • 本文首先采用CALYPSO结构搜索方法, 当Ti与O的化学配比为 16∶32时, 在常温常压下预测TiO2的晶体结构. 结果表明, TiO2晶体的最低能量结构具有I41/amd空间群, 这与实验结果一致[20,21], 验证了CALYPSO方法的正确性. 然后根据Ti, O, Er化学配比为15∶32∶1预测了Er3+掺杂TiO2的基态晶体结构. 如图1所示, 基态Er3+:TiO2晶体具有$ P\overline 4 $m2空间群. 在掺杂过程中, Er3+离子成功取代Ti4+离子, 并形成了[ErO6]9-的局域多面体结构[36]. 在Er3+掺杂后, 局部对称性由C2v降低到D2d[21]. 我们推测有两个原因: 1) Er3+离子和Ti4+离子之间的电荷差异导致了电荷补偿; 2) Er3+离子和Ti4+离子电子半径差异明显, 分别为0.0881和0.0605 nm[15]. 使用的杂质Er3+的原子百分比为6.25%, 接近目前实验中最高效的浓度[15]. Er—O键之间两种不同的键长分别为 2.1307 和2.2605 Å. 计算了掺杂Er3+离子的TiO2晶体结构的晶格常数为a = b = 7.682 Å, c = 9.798 Å, 所有原子的坐标汇总如表1所列, 为进一步的研究提供数据参考.

      图  1  通过CALYPSO结构搜索法确定纯TiO2 (a)和Er3+掺杂TiO2 (b)的晶体结构

      Figure 1.  Crystal structures of the pure TiO2 (a) and Er3+-doped TiO2 (b) by the CALYPSO structure search method.

      AtomxyzWyckoff site
      symmetry
      O(1)0.2470.2490.2044j
      O(2)0.7530.7510.2044k
      O(3)0.2490.7530.7962g
      O(4)0.7510.2470.7968l
      O(6)0.7530.2490.2042g
      O(7)0.2500.2470.7964k
      O(8)0.7510.7530.7964j
      O(11)0.2500.0000.5452f
      O(19)0.5000.7530.0362e
      Ti(1)0.0000.2500.2514j
      Ti(2)0.0000.7500.2514k
      Ti(3)0.2500.0000.7492g
      Ti(4)0.7500.0000.7494h
      Ti(10)0.5000.0000.4951d
      Er(1)0.5000.5000.5001c

      表 1  Er3+:TiO2能量最低结构中所有原子的坐标

      Table 1.  Coordinates of all atoms for the low-energy structure of Er3+:TiO2.

      此外, 在结构搜索过程中, 还发现了许多可能存在于特定温度或压力下的亚稳态结构, 这些亚稳态结构在基态结构演化的研究中发挥了重要作用. 图2所示为3种Er3+掺杂TiO2亚稳态结构. 在表2中按照能量由低到高的顺序整理了3个亚稳态结构相对应的空间群、晶格常数和原胞体积等. 可以发现, 这些亚稳态结构中仍然是Ti4+离子被Er3+离子所取代, 但是具体的掺杂位置却发生了变化. 有趣的是, 亚稳态结构(a)具有与基态结构相同的空间群即$ P\overline 4m2 $, 但亚稳态结构(b)和(c)具有Cmmm对称性.

      图  2  Er3+:TiO2晶体的亚稳态结构

      Figure 2.  Coordination structures of the metastable for Er3+:TiO2.

      Space groupabcV3E/eV
      TiO2I41/amd7.5687.5689.515545.003
      Er3+:TiO2$ P\overline 4 $m27.6827.6829.798578.1930
      Isomer (a)$ P\overline 4 $m27.6817.6819.799578.2130.051
      Isomer (b)Cmmm13.25813.2586.0131051.7640.853
      Isomer (c)Cmmm13.26113.2616.0091051.9880.975

      表 2  Er3+:TiO2的基态结构以及亚稳态结构的晶格参数a, b, c, 原胞体积V, 相对能量∆E

      Table 2.  Structural parameters a, b and c, unit-cell volume, relative energies for the optimized TiO2 and metastable Er3+:TiO2

      接下来, 将实验结果与计算结果进行比较, 以验证本工作预测晶体结构的正确性. 首先通过使用Reflex工具模拟了纯晶体和掺杂Er3+晶体的X射线衍射(XRD)图, 并在图3中绘制出了20°—80°范围内衍射图案. 可以看出, X射线衍射谱中峰的位置和相对强度与Talane 等[15]和Fu 等[20]报道的实验结果符合良好. 为了进一步验证预测结构的动力学稳定性, 分别对纯的以及掺杂的体系进行了声子谱计算, 如图4所示, 在整个布里渊区没有出现虚频, 说明本文预测的结构稳态.

      图  3  模拟的(a) TiO2和(b) Er3+掺杂TiO2的XRD图, 并与实验值进行对比

      Figure 3.  Simulated X-ray diffraction patterns of (a) TiO2 and (b) Er3+-doped TiO2 compared with experimental data.

      图  4  计算的(a) TiO2和(b) Er3+掺杂TiO2的声子谱

      Figure 4.  Calculated phonon spectra of the (a) TiO2 and (b) Er3+-doped TiO2.

      综上所述, 通过理论计算得到Er3+掺杂TiO2晶体的基态结构是动力学稳定的, 并且模拟得到的XRD谱与实验值也符合良好, 从而证明了本文方法的可靠性. 通过上述体系理论计算, 本文首次成功给出了Er3+:TiO2体系的局域结构, 为进一步探索其应用提供帮助. 由此可见, 这种研究思路为将来预测其他稀土掺杂晶体材料提供一种可靠的方法, 进而指导实验的探索和应用.

    • 在得到Er3+:TiO2晶体的基态结构后, 计算了其能带结构和态密度(DOS), 以增加对其电子性质的了解. 如图5所示, Er3+掺杂TiO2体系的带隙值约为2.27 eV, 低于基质晶体的带隙值(Eg = 2.40 eV), 由此可见, Er3+离子的掺杂并没有改变体系的半导体特性. 通过图5(a)可以看出, TiO2晶体的导带底部主要是由Ti4+离子的4d电子所占据. 当三价杂质铒(Er3+)掺杂在TiO2晶体中, 并取代四价钛(Ti4+)的位置, 由于铒只有3个价电子, 它和相邻的O原子构成离子键时, 缺少一个价电子, 于是就形成一个空穴. 这个空穴在铒离子的作用下, 将环绕其运动. 从图5(b)也可以看出, Er3+离子的f电子占据了导带底附近的位置, 形成了新的杂质能带, 最终导致体系的带隙值降低, 这与Mazierski等[23]的结果符合良好. Er3+离子的掺杂不仅保持了半导体TiO2作为光催化剂和敏化剂的特性[37], 还提高了其可见光性能, 从而有望拓宽其从紫外光到可见光的光响应范围[38]. 值得一提的是, 本文计算的带隙值为2.27 eV, 大约是实验值3.44 eV的2/3[12], 这是由于第一性原理方法会普遍低估带隙值的结果[39].

      图  5  采用LDA方法计算的(a) TiO2和(b) Er3+掺杂TiO2的能带结构和态密度

      Figure 5.  Band structures and the DOS of (a) TiO2 and (b) Er3+-doped TiO2, all calculated by the LDA method.

      此外, 本文计算了电子局域函数(ELF), 将Er3+:TiO2晶体的化学键特性转化为直观图像[40,41]. ELF值越大, 表示电子分布越为集中[42]. 图6为Er3+:TiO2与(010)平面的ELF图, ELF值在0—0.85之间. 在O和Er原子之间ELF的值接近0, 表明Er—O之间形成的是离子键.

      图  6  计算得到的Er3+:TiO2电子局域函数 (a)基态结构; (b) (010)平面

      Figure 6.  Electron localized function of the Er3+:TiO2: (a) Ground-state structure; (b) (010) plane.

    • 综上所述, 结合第一性原理计算, 本工作首次采用CALYPSO方法报道了Er3+掺杂TiO2的基态结构. 结果表明: Er3+:TiO2的基态结构具有特殊的$ P\overline 4 $m2空间群结构, 它相对于基质晶体TiO2的对称性I41/amd有所降低, 但都属于四方晶系. 通过观察局部结构的演化可以看到, 杂质Er3+离子取代了主晶体中的Ti4+离子, 形成了[ErO6]9–多面体局部结构. 随后, 通过LDA + U方法计算了Er3+:TiO2晶体的能带结构和态密度, 并且计算得到掺杂体系的带隙值为2.27 eV, 它仍然保持了基质晶体的半导体性质, 从而在光伏电池以及半导体激光器等领域具有广泛地应用. 我们希望通过本计算研究为后续探索Er3+掺杂TiO2的性能和应用提供帮助, 并为进一步寻找其他稀土掺杂发光晶体材料提供可靠的途径.

参考文献 (42)

目录

    /

    返回文章
    返回