搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石英增强光声光谱的气体传感技术研究进展

马欲飞

引用本文:
Citation:

基于石英增强光声光谱的气体传感技术研究进展

马欲飞

Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing

Ma Yu-Fei
PDF
HTML
导出引用
  • 基于石英增强光声光谱(quartz-enhanced photoacoustic spectroscopy, QEPAS)的气体传感技术具有系统体积小、成本低、环境适应性强等优点, 是目前一种重要的光谱式痕量气体检测方法. 探测灵敏度是传感器系统的重要指标, 关系到能否满足实际应用, 因此, 本文从提高QEPAS传感系统灵敏度的角度出发, 总结了常见的技术手段, 包括采用高功率激发光源增大激发强度、采用与分子基频/强吸收带相匹配的激光源来增大吸收强度、采用声波共振腔增大音叉处的声波强度、采用低共振频率石英音叉提高能量积累时间、采用多光程来增大光与气体的相互作用长度等方法, 并对其优缺点分别进行了阐述. 针对工程应用问题, 本文主要讨论了全光纤化和传感系统小型化, 并以载人航天领域的应用为例进行了例证. 最后, 对进一步提高QEPAS传感技术灵敏度的方法进行了展望.
    Laser spectroscopy based techniques have the advantages of high sensitivities, high selectivities, non-invasiveness and in situ, real-time observations. They are widely used in numerous fields, such as environmental monitoring, life science, medical diagnostics, manned space flight, and planetary exploration. Owing to the merits of low cost, compact volume and strong environment adaptability, quartz-enhanced photoacoustic spectroscopy (QEPAS) based sensing is an important laser spectroscopy-based method of detecting the trace gas, which was invented in 2002. Detection sensitivity is a key parameter for gas sensors because it determines their real applications. In this paper, focusing on the detection sensitivity, the common methods for QEPAS are summarized. High power laser including amplified diode laser by erbium doped fiber amplifier (EDFA), and quantum cascade laser are used to improve the excitation intensity of acoustic wave. The absorption line of gas molecules located at the fundamental bands of mid-infrared region is adopted to increase the laser absorption strength. Micro-resonator is employed to enhance the generated acoustic pressure by forming a standing wave cavity. Quartz tuning forks (QTFs) with low resonant frequency are used to increase the accumulation time of acoustic energy in itself. Multi-pass strategy is utilized to amplify the action length between laser beam and target gas in the prongs of QTF. The advantages and disadvantages of the above methods are discussed respectively. For the issues in real applications, the all-fiber strucure in near-infared region and mid-infrared region and miniaturization using three-dimensional(3D) printing technique for QEPAS sensor are summarized. A QEPAS technique based multi-gas sensor is used to quantify the concentration of carbon monoxide (CO), carbon dioxide (CO2), hydrogen cyanide (HCN), and hydrogen chloride (HCl) for post-fire cleanup aboard spacecraft, which is taken for example for the real application.Finally, the methods of further improving the sensitivity of QEPAS sensor are proposed.
      通信作者: 马欲飞, mayufei@hit.edu.cn
      作者简介:
      马欲飞, 哈尔滨工业大学航天学院可调谐激光技术国家级重点实验室教授. 国家优秀青年基金获得者、黑龙江省首批优秀青年基金获得者、哈尔滨工业大学青年拔尖人才、哈尔滨工业大学青年科学家工作室学术带头人. 从事激光传感和激光技术研究, 作为负责人主持“国家载人航天”预研项目、国家自然基金等近20项. 担任Optics ExpressOptical EngineeringMicrowave and Optical Technology Letters副主编, 还担任SensorsApplied SciencesFrontiers in Physics编辑、Photoacoustics 等客座编辑. 以第一作者/通讯作者发表1区论文50余篇, ESI热点论文、ESI高被引论文、Focus Article、Feature Article、特邀论文等10余篇. 获“军队科技进步二等奖”、教育部“学术新人奖”、美国光学学会“Incubic/Milton Chang Travel Grant”等多项奖励
    • 基金项目: 国家优秀青年科学基金(批准号: 62022032)、国家自然科学基金(批准号: 61875047, 61505041)、黑龙江省优秀青年科学基金(批准号: YQ2019F006)、黑龙江省博士后科研启动金(批准号: LBH-Q18052)、中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Ma Yu-Fei, mayufei@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62022032, 61875047, 61505041), the Outstanding Youth Scientsit Fund of the Natural Science Foundation of Heilongjiang Province of China (Grant No. YQ2019F006), the Scientific Rearch Starting Funds for the Postdoctoral of Heilongjiang Province, China (Grant No. LBH-Q18052), the Fundamental Research Funds for the Central Universities
    [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54Google Scholar

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210Google Scholar

    [3]

    Wojtas J, Tittel F K, Stacewicz T, Bielecki Z, Lewicki R, Mikolajczyk J, Nowakowski M, Szabra D, Stefanski P, Tarka J 2014 Int. J. Thermophys. 35 2215Google Scholar

    [4]

    Milde T, Hoppe M, Tatenguem H, Mordmüller M, Ogorman J, Willer U, Schade W, Sacher J 2018 Appl. Opt. 57 C120Google Scholar

    [5]

    Ma Y F, Qiao S D, He Y, Li Y, Zhang Z H, Yu X, Tittel F K 2019 Opt. Express 27 14163Google Scholar

    [6]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401Google Scholar

    [7]

    Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 28861Google Scholar

    [8]

    Qiao S D, Qu Y C, Ma Y F, He Y, Wang Y, Hu Y Q, Yu X, Zhang Z H, Tittel F K 2019 Sensors 19 4187Google Scholar

    [9]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. SPIE 8032 80320D

    [10]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 32103Google Scholar

    [11]

    Bell A G 1880 Am. J. Sci. 20 305

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902Google Scholar

    [13]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X. M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527Google Scholar

    [14]

    Ma Y F 2020 Front. Phys. 8 268Google Scholar

    [15]

    Giglio M, Patimisco P, Sampaolo A, Zifarelli A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Tittel F K, Spagnolo V 2018 Appl. Phys. Lett. 113 171101Google Scholar

    [16]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821Google Scholar

    [17]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596Google Scholar

    [18]

    Rousseau R, Loghmari Z, Bahriz M, Chamassi K, Teissier R, Baranov A N, Vicet A 2019 Opt. Express 27 7435Google Scholar

    [19]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [20]

    Lassen M, Lamard L, Feng Y, Peremans A, Petersen J C 2016 Opt. Lett. 41 4118Google Scholar

    [21]

    Ma Y F 2018 Appl. Sci. 8 1822Google Scholar

    [22]

    Petra, N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phys. B 94 673Google Scholar

    [23]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [24]

    Giessibl F J 1998 Appl. Phys. Lett. 73 3956Google Scholar

    [25]

    Barbic M, Eliason L, Ranshaw J 2007 Sens. Actuators, A 136 564Google Scholar

    [26]

    Babic B, Hsu M T L, Gray M B, Lu M Z, Herrmann J 2015 Sens. Actuators, A 223 167Google Scholar

    [27]

    Paetzold U W, Lehnen S, Bittkau K, Rau U, Carius R 2014 Nano Lett. 14 6599Google Scholar

    [28]

    Zhang M, Chen D H, He X, Wang X M 2020 Sensors 20 198

    [29]

    Nguyen B T, Triki M, Desbrosses G, Vicet A 2015 Rev. Sci. Instrum. 86 023111Google Scholar

    [30]

    Ma Y F, Tong Y, He Y, Long J H, Yu X 2018 Sensors 18 2047Google Scholar

    [31]

    Patimisco P, Borri S, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2014 Analyst 139 2079Google Scholar

    [32]

    Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev. 5 011106Google Scholar

    [33]

    Patimisco P, Sampaolo A, Dong L, Giglio M, Scamarcio G, Tittel F K, Spagnolo V 2016 Sens. Actuators, B 227 539Google Scholar

    [34]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105Google Scholar

    [35]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Lasers Eng. 132 106155Google Scholar

    [36]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008Google Scholar

    [37]

    Wu H P, Sampaolo A, Dong L, Patimisco P, Liu X L, Zheng H D, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2015 Appl. Phys. Lett. 107 111104Google Scholar

    [38]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 107 031107

    [39]

    Giglio M, Zifarelli A, Sampaolo A, Menduni G, Elefante A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Wu H P, Passaro V M N, Patimisco P, Tittel F K, Dong L, Spagnolo V 2020 Photoacoustics 17 100159Google Scholar

    [40]

    Ma Y F, Tong Y, He Y, Yu X, Tittel F K 2018 Sensors 18 122

    [41]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 9666Google Scholar

    [42]

    Yi H M, Maamary R, Gao X M, Sigrist M W, Fertein E, Chen W D 2015 Appl. Phys. Lett. 106 101109Google Scholar

    [43]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [44]

    Wang Z, Li Z L, Ren W 2016 Opt. Express 24 4143Google Scholar

    [45]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105Google Scholar

    [46]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Optics 17 055401Google Scholar

    [47]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [48]

    Zheng H D, Dong L, Sampaolo A, Wu H P, Patimisco P, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2016 Opt. Lett. 41 978Google Scholar

    [49]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187Google Scholar

    [50]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [51]

    Patimisco P, Sampaolo A, Mackowiak V, Rossmadl H, Cable A, Tittel F K, Spagnolo V 2018 IEEE Trans. Ultrason. Ferroelctr. Freq. Control 65 1951Google Scholar

    [52]

    Patimisco P, Sampaolo A, Zheng H D, Dong L, Tittel F K, Spagnolo V 2016 Adv. Phys. X 2 169

    [53]

    Zheng H D, Liu Y H, Lin H Y, Liu B, Gu X H, Li D Q, Huang B C, Wu Y C, Dong L P, Zhu W G, Tang J Y, Guan H Y, Lu H H, Zhong Y C, Fang J B, Luo Y H, Zhang J, Yu J H, Chen Z, Tittel F K 2020 Photoacoustics 17 100158Google Scholar

    [54]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2017 Opt. Express 25 29356Google Scholar

    [55]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sens. Actuators, B 233 388Google Scholar

    [56]

    Zheng H D, Dong L, Patimisco P, Wu H P, Sampaolo A, Yin X K, Li S Z, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 021110Google Scholar

    [57]

    Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett. 46 977Google Scholar

    [58]

    Ma Y F, Qiao S D, Patimisco P, Sampaolo A, Wang Y, Tittel F K, Spagnolo V 2020 Appl. Phys. Lett. 116 061101Google Scholar

    [59]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, De Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114Google Scholar

    [60]

    Zheng H D, Dong L, Sampaolo A, Patimisco P, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2016 Appl. Phys. Lett. 109 111103Google Scholar

    [61]

    Sampaolo A, Patimisco P, Dong L, Geras A, Scamarcio G, Starecki T, Tittel F K, Spagnolo V 2015 Appl. Phys. Lett. 107 231102Google Scholar

    [62]

    Wu H P, Yin X K, Dong L, Pei K L, Sampaolo A, Patimisco P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 121104Google Scholar

    [63]

    Feng W, Qu Y, Gao Y, Ma Y 2021 Microwave Opt. Technol. Lett. 1 0

    [64]

    Menduni G, Sgobba F, Russo S D, Ranieri A C, Sampaolo A, Patimisco P, Giglio M, Passaro V M N, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V 2020 Molecules 25 5607Google Scholar

    [65]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115Google Scholar

    [66]

    He Y, Ma Y F, Tong Y, Yu X, Peng Z F, Gao J, Tittel F K 2017 Appl. Phys. Lett. 111 241102Google Scholar

    [67]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2012 Opt Lett. 37 4461Google Scholar

    [68]

    Li Z, Shi C, Ren W 2016 Opt. Lett. 41 4095Google Scholar

    [69]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [70]

    Ma Y F, Tong Y, He Y, Jin X G, Tittel F K 2019 Opt. Express 27 9302Google Scholar

    [71]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2011 Proc. SPIE 7945 794501Google Scholar

    [72]

    Hu Y Q, Qiao S D, He Y, Lang Z T, Ma Y F 2021 Opt. Express 29 5121Google Scholar

    [73]

    Ma Y F, Hu Y Q, Qiao S D, He Y, Tittel F K 2020 Photoacoustics 20 100206Google Scholar

    [74]

    Qiao S D, He Y, Ma Y F 2021 Opt. Lett.Google Scholar

  • 图 1  QEPAS传感示意图 (a) QEPAS技术原理; (b) 声波产生及探测

    Fig. 1.  Schematic diagram of QEPAS sensing: (a) Principle of QEPAS; (b) generation and detection of acoustics wave.

    图 2  石英音叉弯曲振动模式 (a) 音叉模型; (b) 面外基频模态; (c) 面内基频模态; (d) 面内第一泛频模态

    Fig. 2.  Flexural mode of quartz tuning fork: (a) Mode of quartz tuning fork; (b) out-of-plane fundamental mode; (c) in-plane fundamental mode; (d) in-plane 1st overtone mode

    图 3  EDFA光放大 (a) 种子光发射谱; (b) 放大后的发射谱[38]

    Fig. 3.  Laser amplification by EDFA: (a) Emission spectrum for seed diode laser; (b) emission spectrum for amplified diode laser. Reproduced from Ref. [38], with the permission of AIP Publishing.

    图 4  内腔增强型QEPAS传感系统[59]

    Fig. 4.  Intracavity enhanced QEPAS sensor system. Reproduced from Ref. [59], with the permission of AIP Publishing.

    图 5  基于THz激光源的QEPAS传感系统[45]

    Fig. 5.  QEPAS sensing system based on THz laser. Reproduced from Ref. [45], with the permission of AIP Publishing.

    图 6  微共振腔对石英音叉QTF的增强效果示意图

    Fig. 6.  The configuration of micro-resonator and the enhanced effect of acoustic pressure.

    图 7  微共振腔结构 (a) “共轴”式; (b) “离轴”式; (c) 单管“共轴”式; (d) 嵌入“离轴”式

    Fig. 7.  The configuration of micro-resonator: (a) On-beam; (b) off-beam; (c) single-tube on-beam; (d) embedded off-beam.

    图 8  (a) 不同模式下石英音叉的最佳激发位置; (b) 基频振动模态; (c) 第一泛频振动模态; (d) 基频与第一泛频的复合振动模态[62]

    Fig. 8.  (a) Optimal excitation position for different modes of quartz tuning fork; (b) fundamental mode; (c) 1st overtone mode; (d) combined mode. Reproduced from Ref. [62], with the permission of AIP Publishing.

    图 9  双波腹激发下的QEPAS传感器[56]

    Fig. 9.  Double antinode excited QEPAS sensor. Reproduced from Ref. [56], with the permission of AIP Publishing.

    图 10  基于多光程吸收的QEPAS传感器[57]

    Fig. 10.  Multi-pass based QEPAS sensor. Reprinted with permission from Ref. [57] © The Optical Society.

    图 11  面内激光入射的QEPAS传感器[58]

    Fig. 11.  In-plane QEPAS sensor. Reproduced from Ref. [58], with the permission of AIP Publishing.

    图 12  基于倏逝场激发的准分布式全光纤QEPAS传感器[66]

    Fig. 12.  Quasi-distributed gas sensing based on fiber evanescent wave QEPAS sensor. Reproduced from Ref. [66], with the permission of AIP Publishing.

    图 13  基于机械加工方式所得到的光学及声波探测部分[69]

    Fig. 13.  Optical and acoustic detection parts for QEPAS sensor based on mechanical processing[69].

    图 14  基于3D打印方式所得到的光学及声波探测部分[70]

    Fig. 14.  Optical and acoustic detection parts for QEPAS sensor based on 3D printing. Reprinted with permission from Ref. [70] © The Optical Society.

    图 15  多通道QEPAS传感器[71]

    Fig. 15.  Multi-channel QEPAS sensor[71].

  • [1]

    Khalil M A K, Rasmussen R A 1984 Science 224 54Google Scholar

    [2]

    Logan J A, Prather M J, Wofsy S C, McElroy M B 1981 J. Geophys. Res. 86 7210Google Scholar

    [3]

    Wojtas J, Tittel F K, Stacewicz T, Bielecki Z, Lewicki R, Mikolajczyk J, Nowakowski M, Szabra D, Stefanski P, Tarka J 2014 Int. J. Thermophys. 35 2215Google Scholar

    [4]

    Milde T, Hoppe M, Tatenguem H, Mordmüller M, Ogorman J, Willer U, Schade W, Sacher J 2018 Appl. Opt. 57 C120Google Scholar

    [5]

    Ma Y F, Qiao S D, He Y, Li Y, Zhang Z H, Yu X, Tittel F K 2019 Opt. Express 27 14163Google Scholar

    [6]

    Spagnolo V, Dong L, Kosterev A A, Tittel F K 2012 Opt. Express 20 3401Google Scholar

    [7]

    Krzempek K, Dudzik G, Abramski K 2018 Opt. Express 26 28861Google Scholar

    [8]

    Qiao S D, Qu Y C, Ma Y F, He Y, Wang Y, Hu Y Q, Yu X, Zhang Z H, Tittel F K 2019 Sensors 19 4187Google Scholar

    [9]

    Bradshaw J L, Bruno J D, Lascola K M, Leavitt R P, Pham J T, Towner F J, Sonnenfroh D M, Parameswaran K R 2011 Proc. SPIE 8032 80320D

    [10]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 32103Google Scholar

    [11]

    Bell A G 1880 Am. J. Sci. 20 305

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902Google Scholar

    [13]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X. M, Chen W D, Tittel F K 2009 Appl. Phys. B 94 527Google Scholar

    [14]

    Ma Y F 2020 Front. Phys. 8 268Google Scholar

    [15]

    Giglio M, Patimisco P, Sampaolo A, Zifarelli A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Tittel F K, Spagnolo V 2018 Appl. Phys. Lett. 113 171101Google Scholar

    [16]

    Dong L, Yu Y J, Li C G, So S, Tittel F K 2015 Opt. Express 23 19821Google Scholar

    [17]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R, Tittel F K 2015 Sensors 15 7596Google Scholar

    [18]

    Rousseau R, Loghmari Z, Bahriz M, Chamassi K, Teissier R, Baranov A N, Vicet A 2019 Opt. Express 27 7435Google Scholar

    [19]

    Ma Y F, Yu X, Yu G, Li X D, Zhang J B, Chen D Y, Sun R, Tittel F K 2015 Appl. Phys. Lett. 107 021106Google Scholar

    [20]

    Lassen M, Lamard L, Feng Y, Peremans A, Petersen J C 2016 Opt. Lett. 41 4118Google Scholar

    [21]

    Ma Y F 2018 Appl. Sci. 8 1822Google Scholar

    [22]

    Petra, N, Zweck J, Kosterev A A, Minkoff S E, Thomazy D 2009 Appl. Phys. B 94 673Google Scholar

    [23]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Lett. 44 1904Google Scholar

    [24]

    Giessibl F J 1998 Appl. Phys. Lett. 73 3956Google Scholar

    [25]

    Barbic M, Eliason L, Ranshaw J 2007 Sens. Actuators, A 136 564Google Scholar

    [26]

    Babic B, Hsu M T L, Gray M B, Lu M Z, Herrmann J 2015 Sens. Actuators, A 223 167Google Scholar

    [27]

    Paetzold U W, Lehnen S, Bittkau K, Rau U, Carius R 2014 Nano Lett. 14 6599Google Scholar

    [28]

    Zhang M, Chen D H, He X, Wang X M 2020 Sensors 20 198

    [29]

    Nguyen B T, Triki M, Desbrosses G, Vicet A 2015 Rev. Sci. Instrum. 86 023111Google Scholar

    [30]

    Ma Y F, Tong Y, He Y, Long J H, Yu X 2018 Sensors 18 2047Google Scholar

    [31]

    Patimisco P, Borri S, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2014 Analyst 139 2079Google Scholar

    [32]

    Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev. 5 011106Google Scholar

    [33]

    Patimisco P, Sampaolo A, Dong L, Giglio M, Scamarcio G, Tittel F K, Spagnolo V 2016 Sens. Actuators, B 227 539Google Scholar

    [34]

    Kosterev A A, Tittel F K, Serebryakov D V, Malinovsky A L, Morozov I V 2005 Rev. Sci. Instrum. 76 043105Google Scholar

    [35]

    Li Y, Wang R Z, Tittel F K, Ma Y F 2020 Opt. Lasers Eng. 132 106155Google Scholar

    [36]

    Ma Y F, Lewicki R, Razeghi M, Tittel F K 2013 Opt. Express 21 1008Google Scholar

    [37]

    Wu H P, Sampaolo A, Dong L, Patimisco P, Liu X L, Zheng H D, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2015 Appl. Phys. Lett. 107 111104Google Scholar

    [38]

    Ma Y F, He Y, Zhang L G, Yu X, Zhang J B, Sun R, Tittel F K 2017 Appl. Phys. Lett. 107 031107

    [39]

    Giglio M, Zifarelli A, Sampaolo A, Menduni G, Elefante A, Blanchard R, Pfluegl C, Witinski M F, Vakhshoori D, Wu H P, Passaro V M N, Patimisco P, Tittel F K, Dong L, Spagnolo V 2020 Photoacoustics 17 100159Google Scholar

    [40]

    Ma Y F, Tong Y, He Y, Yu X, Tittel F K 2018 Sensors 18 122

    [41]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2018 Opt. Express 26 9666Google Scholar

    [42]

    Yi H M, Maamary R, Gao X M, Sigrist M W, Fertein E, Chen W D 2015 Appl. Phys. Lett. 106 101109Google Scholar

    [43]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [44]

    Wang Z, Li Z L, Ren W 2016 Opt. Express 24 4143Google Scholar

    [45]

    Borri S, Patimisco P, Sampaolo A, Beere H E, Ritchie D A, Vitiello M S, Scamarcio G, Spagnolo V 2013 Appl. Phys. Lett. 103 021105Google Scholar

    [46]

    Ma Y F, Yu G, Zhang J B, Yu X, Sun R 2015 J. Optics 17 055401Google Scholar

    [47]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [48]

    Zheng H D, Dong L, Sampaolo A, Wu H P, Patimisco P, Yin X K, Ma W G, Zhang L, Yin W B, Spagnolo V, Jia S T, Tittel F K 2016 Opt. Lett. 41 978Google Scholar

    [49]

    Yi H M, Chen W D, Sun S W, Liu K, Tan T, Gao X M 2012 Opt. Express 20 9187Google Scholar

    [50]

    Hu L, Zheng C T, Zheng J, Wang Y D, Tittel F K 2019 Opt. Lett. 44 2562Google Scholar

    [51]

    Patimisco P, Sampaolo A, Mackowiak V, Rossmadl H, Cable A, Tittel F K, Spagnolo V 2018 IEEE Trans. Ultrason. Ferroelctr. Freq. Control 65 1951Google Scholar

    [52]

    Patimisco P, Sampaolo A, Zheng H D, Dong L, Tittel F K, Spagnolo V 2016 Adv. Phys. X 2 169

    [53]

    Zheng H D, Liu Y H, Lin H Y, Liu B, Gu X H, Li D Q, Huang B C, Wu Y C, Dong L P, Zhu W G, Tang J Y, Guan H Y, Lu H H, Zhong Y C, Fang J B, Luo Y H, Zhang J, Yu J H, Chen Z, Tittel F K 2020 Photoacoustics 17 100158Google Scholar

    [54]

    Ma Y F, He Y, Tong Y, Yu X, Tittel F K 2017 Opt. Express 25 29356Google Scholar

    [55]

    Ma Y F, He Y, Yu X, Chen C, Sun R, Tittel F K 2016 Sens. Actuators, B 233 388Google Scholar

    [56]

    Zheng H D, Dong L, Patimisco P, Wu H P, Sampaolo A, Yin X K, Li S Z, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 021110Google Scholar

    [57]

    Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett. 46 977Google Scholar

    [58]

    Ma Y F, Qiao S D, Patimisco P, Sampaolo A, Wang Y, Tittel F K, Spagnolo V 2020 Appl. Phys. Lett. 116 061101Google Scholar

    [59]

    Borri S, Patimisco P, Galli I, Mazzotti D, Giusfredi G, Akikusa N, Yamanishi M, Scamarcio G, De Natale P, Spagnolo V 2014 Appl. Phys. Lett. 104 091114Google Scholar

    [60]

    Zheng H D, Dong L, Sampaolo A, Patimisco P, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2016 Appl. Phys. Lett. 109 111103Google Scholar

    [61]

    Sampaolo A, Patimisco P, Dong L, Geras A, Scamarcio G, Starecki T, Tittel F K, Spagnolo V 2015 Appl. Phys. Lett. 107 231102Google Scholar

    [62]

    Wu H P, Yin X K, Dong L, Pei K L, Sampaolo A, Patimisco P, Zheng H D, Ma W G, Zhang L, Yin W B, Xiao L T, Spagnolo V, Jia S T, Tittel F K 2017 Appl. Phys. Lett. 110 121104Google Scholar

    [63]

    Feng W, Qu Y, Gao Y, Ma Y 2021 Microwave Opt. Technol. Lett. 1 0

    [64]

    Menduni G, Sgobba F, Russo S D, Ranieri A C, Sampaolo A, Patimisco P, Giglio M, Passaro V M N, Csutak S, Assante D, Ranieri E, Geoffrion E, Spagnolo V 2020 Molecules 25 5607Google Scholar

    [65]

    Ma Y F, He Y, Yu X, Zhang J B, Sun R, Tittel F K 2016 Appl. Phys. Lett. 108 091115Google Scholar

    [66]

    He Y, Ma Y F, Tong Y, Yu X, Peng Z F, Gao J, Tittel F K 2017 Appl. Phys. Lett. 111 241102Google Scholar

    [67]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2012 Opt Lett. 37 4461Google Scholar

    [68]

    Li Z, Shi C, Ren W 2016 Opt. Lett. 41 4095Google Scholar

    [69]

    He Y, Ma Y F, Tong Y, Yu X, Tittel F K 2019 Opt. Laser Technol. 115 129Google Scholar

    [70]

    Ma Y F, Tong Y, He Y, Jin X G, Tittel F K 2019 Opt. Express 27 9302Google Scholar

    [71]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2011 Proc. SPIE 7945 794501Google Scholar

    [72]

    Hu Y Q, Qiao S D, He Y, Lang Z T, Ma Y F 2021 Opt. Express 29 5121Google Scholar

    [73]

    Ma Y F, Hu Y Q, Qiao S D, He Y, Tittel F K 2020 Photoacoustics 20 100206Google Scholar

    [74]

    Qiao S D, He Y, Ma Y F 2021 Opt. Lett.Google Scholar

  • [1] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法. 物理学报, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [2] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法. 物理学报, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [3] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪. 物理学报, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [4] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术. 物理学报, 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [5] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化. 物理学报, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [6] 赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静. 基于椭圆腔共振的石英增强光声光谱理论研究. 物理学报, 2016, 65(19): 190701. doi: 10.7498/aps.65.190701
    [7] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂. 基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化. 物理学报, 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [10] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [11] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响. 物理学报, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [12] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [13] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究. 物理学报, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [14] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究. 物理学报, 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [15] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [17] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  10911
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-05-05
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回