搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子器件电输运中基于量子干涉效应的调控策略

李瑞豪 刘俊扬 洪文晶

引用本文:
Citation:

单分子器件电输运中基于量子干涉效应的调控策略

李瑞豪, 刘俊扬, 洪文晶

Regulation strategies based on quantum interference in electrical transport of single-molecule devices

Li Rui-Hao, Liu Jun-Yang, Hong Wen-Jing
PDF
HTML
导出引用
  • 单分子器件电输运中的量子干涉效应是电子在分子独立的轨道能级内传输时因保持量子相干性, 从而在不同能级之间发生相互干涉的现象. 这种现象导致了电子在单分子器件内透射概率的增加或减小, 在实验中体现为单分子器件电导值的升高或降低. 近些年, 利用量子干涉效应对不同的单分子器件进行调控在实验中被证实是有效的调控手段, 如对单分子开关、单分子热电器件、单分子自旋器件等器件性能的调控. 本文介绍了量子干涉效应的相关理论与预测、实验观测与证实, 以及其在不同单分子器件上的调控作用.
    The quantum interference effect in single-molecule devices is a phenomenon in which electrons are coherently transported through different frontier molecular orbitals with multiple energy levels, and the interference will occur between different energy levels. This phenomenon results in the increase or decrease of the probability of electron transmission in the electrical transport of the single-molecule device, and it is manifested in the experiment when the conductance value of the single-molecule device increases or decreases. In recent years, the use of quantum interference effects to control the electron transport in single-molecule device has proved to be an effective method, such as single-molecule switches, single-molecule thermoelectric devices, and single-molecule spintronic devices. In this work, we introduce the related theories of quantum interference effects, early experimental observations, and their regulatory role in single-molecule devices.
      通信作者: 刘俊扬, jyliu@xmu.edu.cn ; 洪文晶, whong@xmu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21933012, 31871877)、国家重点研发计划(批准号: 2017YFA0204902)和中央高校基本科研业务费专项资金(批准号: 20720200068, 20720190002)资助的课题
      Corresponding author: Liu Jun-Yang, jyliu@xmu.edu.cn ; Hong Wen-Jing, whong@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21933012, 31871877), the National Key R&D Program of China (Grant No. 2017YFA0204902), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 20720200068, 20720190002).
    [1]

    Xiang D, Wang X, Jia C, Lee T, Guo X 2016 Chem. Rev. 116 4318Google Scholar

    [2]

    Lü J T, Brandbyge M, Hedegård P, Todorov T N, Dundas D 2012 Phys. Rev. B 85 245444Google Scholar

    [3]

    Lü J T, Hedegård P, Brandbyge M 2011 Phys. Rev. Lett. 107 046801Google Scholar

    [4]

    Huang C, Jevric M, Borges A, et al. 2017 Nat. Commun. 8 15436Google Scholar

    [5]

    Sangtarash S, Huang C, Sadeghi H, et al. 2015 J. Am. Chem. Soc. 137 11425Google Scholar

    [6]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [7]

    Carlotti M, Kovalchuk A, Waechter T, Qiu X, Zharnikov M, Chiechi R C 2016 Nat. Commun. 7 13904Google Scholar

    [8]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [9]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [10]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303Google Scholar

    [12]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378Google Scholar

    [13]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [14]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [15]

    Chen F, Hihath J, Huang Z, Li X, Tao N J 2007 Annu. Rev. Phys. Chem. 58 535Google Scholar

    [16]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [17]

    Yoshizawa K 2012 Acc. Chem. Res. 45 1612Google Scholar

    [18]

    Zhao X, Geskin V, Stadler R 2017 J. Chem. Phys. 146 092308Google Scholar

    [19]

    Nelson E 1966 Phys. Rev. 150 1079Google Scholar

    [20]

    Gunasekaran S, Greenwald J E, Venkataraman L 2020 Nano Lett. 20 2843Google Scholar

    [21]

    Cheng P, Li Y, Chang S 2020 Acta Phys. Chim. Sin. 36 1909043Google Scholar

    [22]

    Zhang K, Wang C, Zhang M, Bai Z, Xie F F, Tan Y Z, Guo Y, Hu K J, Cao L, Zhang S 2020 Nat. Nanotechnol. 15 1019Google Scholar

    [23]

    Guo X, Liang W J 2019 Chin. Phys. Lett. 36 127301Google Scholar

    [24]

    Noguchi Y, Nagase T, Kubota T, Kamikado T, Mashiko S 2006 Thin Solid Films 499 90Google Scholar

    [25]

    Jia C, Ma B, Xin N, Guo X 2015 Acc. Chem. Res. 48 2565Google Scholar

    [26]

    Quintans C S, Andrienko D, Domke K F, Aravena D, Koo S, Díez-Pérez I, Aragonès A C 2021 Appl. Sci. 11 3317Google Scholar

    [27]

    Xiang D, Jeong H, Lee T, Mayer D 2013 Adv. Mater. 25 4845Google Scholar

    [28]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [29]

    Moreno-Garcia P, Gulcur M, Manrique D Z, et al. 2013 J. Am. Chem. Soc. 135 12228Google Scholar

    [30]

    Su T A, Li H, Steigerwald M L, Venkataraman L, Nuckolls C 2015 Nat. Chem. 7 215Google Scholar

    [31]

    Bai J, Daaoub A, Sangtarash S, et al. 2019 Nat. Mater. 18 364Google Scholar

    [32]

    Hybertsen M S, Venkataraman L 2016 Acc. Chem. Res. 49 452Google Scholar

    [33]

    Xu B Q, Tao N J J 2003 Science 301 1221Google Scholar

    [34]

    Zhao Z, Liu R, Mayer D, et al. 2018 Small 14 1703815Google Scholar

    [35]

    Hong W, Valkenier H, Meszaros G, et al. 2011 Beilstein J. Nanotechnol. 2 699Google Scholar

    [36]

    Saraiva-Souza A, Smeu M, Zhang L, Souza Filho A G, Guo H, Ratner M A 2014 J. Am. Chem. Soc. 136 15065Google Scholar

    [37]

    Guedon C M, Valkenier H, Markussen T, et al. 2012 Nat. Nanotechnol. 7 304Google Scholar

    [38]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T S, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [39]

    Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L, Campos L M 2017 Sci. Adv. 3 eaao2615Google Scholar

    [40]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [41]

    Liu X, Sangtarash S, Reber D, et al. 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [42]

    Yang Y, Gantenbein M, Alqorashi A, et al. 2018 J. Phys. Chem. C 122 14965Google Scholar

    [43]

    Nitzan A 2001 Annu. Rev. Phys. Chem. 52 681Google Scholar

    [44]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [45]

    Stefani D, Weiland K J, Skripnik M, et al. 2018 Nano Lett. 18 5981Google Scholar

    [46]

    Yang G, Sangtarash S, Liu Z, et al. 2017 Chem. Sci. 8 7505Google Scholar

    [47]

    Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi R C 2020 Angew. Chem. Int. Ed. 59 14308Google Scholar

    [48]

    Li Y, Buerkle M, Li G, et al. 2019 Nat. Mater. 18 357Google Scholar

    [49]

    Greenwald J E, Cameron J, Findlay N J, et al. 2021 Nat. Nanotechnol. 16 313Google Scholar

    [50]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [51]

    Boulanger C 2010 J. Electron. Mater. 39 1818Google Scholar

    [52]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [53]

    Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873Google Scholar

    [54]

    Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C 2016 Chem. Soc. Rev. 45 6147Google Scholar

    [55]

    Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T 2018 Sci. Technol. Adv. Mater. 19 836Google Scholar

    [56]

    Zhang Q, Sun Y, Xu W, Zhu D 2014 Adv. Mater. 26 6829Google Scholar

    [57]

    Wang H, Yu C 2019 Joule 3 53Google Scholar

    [58]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [59]

    Zhang F, Zang Y, Huang D, Di C A, Gao X, Sirringhaus H, Zhu D 2015 Adv. Funct. Mater. 25 3004Google Scholar

    [60]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [61]

    Xie F, Chen K Q, Peng X F, Wang Y G, Zhang Z H 2010 Phys. Lett. A 374 2062Google Scholar

    [62]

    Cui L, Hur S, Akbar Z A, Klockner J C, Jeong W, Pauly F, Jang S Y, Reddy P, Meyhofer E 2019 Nature 572 628Google Scholar

    [63]

    Lee W, Kim K, Jeong W, Angela Zotti L, Pauly F, Carlos Cuevas J, Reddy P 2013 Nature 498 209Google Scholar

    [64]

    Gehring P, Sowa J K, Hsu C, et al. 2021 Nat. Nanotechnol. 16 426Google Scholar

    [65]

    Almughathawi R, Hou S, Wu Q, Liu Z, Hong W, Lambert C 2021 ACS Sens. 6 470Google Scholar

    [66]

    Lambert C J, Sadeghi H, Al-Galiby Q H 2016 C. R. Phys. 17 1084Google Scholar

    [67]

    Strange M, Seldenthuis J S, Verzijl C J O, Thijssen J M, Solomon G C 2015 J. Chem. Phys. 142 084703Google Scholar

    [68]

    Sadeghi H 2019 J. Phys. Chem. C 123 12556Google Scholar

    [69]

    Miao R, Xu H, Skripnik M, et al. 2018 Nano Lett. 18 5666Google Scholar

    [70]

    Grace I M, Olsen G, Hurtado-Gallego J, et al. 2020 Nanoscale 12 14682Google Scholar

    [71]

    Rai D, Galperin M 2012 Phys. Rev. B 86 045420Google Scholar

    [72]

    Chen K W, Su Y H, Chen S H, Chen C L, Chang C R 2013 Phys. Rev. B 88 035443Google Scholar

    [73]

    Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A, Tal O 2019 Nat. Commun. 10 5565Google Scholar

    [74]

    Zhang Y P, Chen L C, Zhang Z Q, et al. 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [75]

    Baghernejad M, van Dyck C, Bergfield J, et al. 2019 Chem. Eur. J 25 15141Google Scholar

    [76]

    Roura-Bas P, Tosi L, Aligia A A, Hallberg K 2011 Phys. Rev. B 84 073406Google Scholar

    [77]

    Mitchell A K, Pedersen K G L, Hedegard P, Paaske J 2017 Nat. Commun. 8 15210Google Scholar

  • 图 1  单分子器件量子干涉效应的理论预测、实验观测以及对于器件性能的调控

    Fig. 1.  Theoretical prediction, experimental observation and regulation of quantum interference effect in single-molecule devices.

    图 2  (a)分子结的电学测量示意图; (b)分子结的电输运原理图; (c)通过苯环的对位和间位进行连接的分子上的电输运通路; (d)具有相增量子干涉效应(红色)和相消量子干涉效应(蓝色)的分子的透射谱[20]

    Fig. 2.  (a) Schematic of the electrical measurement of molecular junction; (b) the mechanism of electron transport in a molecular junction; (c) different electron transport pathways in Para and Meta site connected benzene ring; (d) the transmission spectrum of molecules with CQI (red) and DQI (blue) effects respectively[20].

    图 3  (a)分子AC, AQ和AH的结构[35]; (b)—(d)分别为AC, AQ和AH的单分子一维电导图[35]; (e)分子AQ-DT, AQ-MT, AC-DT以及OPE3-DT的分子结构[37]; (f), (g)分别为AC-DT和AQ-DT分子层的I-V特性曲线[37]; (h)理论计算的AQ-MT, AC-DT以及AQ-DT的透射谱[37]

    Fig. 3.  (a) Molecular structure of AC, AQ and AH respectively[35]; (b)–(d) the one-dimensional conductance histogram of AC, AQ and AH respectively[35]; (e) the molecular structure of AQ-DT, AQ-MT, AC-DT and OPE3-DT[37]; (f), (g) the two-dimensional I-V histogram of AC-DT and AQ-DT respectively[37]; (h) the transmission spectrum of AQ-MT, AC-DT, and AQ-DT[37].

    图 4  (a)上方图表示费米能级在2个相同相位的分子轨道之间引起的相消量子干涉示意图, 下方图表示费米能级在2个具有相反相位的分子轨道上方引起的相消量子干涉示意图; (b)分别对应图(a)中2种相消量子干涉效应的透射谱; (c) 3个目标分子的一维电导统计图; (d) 3个目标分子的I-V特性曲线图; (e) 3号分子在方波电压激励下的电流响应; (f) 3个目标分子的透射谱[49]

    Fig. 4.  (a) Schematic diagram of DQI caused by Fermi level between two molecular orbitals with the same phase (upper) and the schematic diagram of DQI caused by Fermi level above two molecular orbitals with opposite phase (lower); (b) the transmission spectrum corresponding to the two DQI mechanisms shown in (a); (c) one-dimensional conductance histograms of three target molecules; (d) I-V curves of three target molecules; (e) the current response square wave voltage modulation of molecular 3; (f) transmission spectrum of three target molecules[49].

    图 5  (a), (b)分别为Para-OPE3和Meta-OPE3的分子结构; (c), (d)分别为Para-OPE3和Meta-OPE3在不同温度下的热电势; (e) Para-OPE3和Meta-OPE3的透射谱; (f)由透射谱得到的Para-OPE3和Meta-OPE3的透射概率斜率随能级的变化谱[69]

    Fig. 5.  (a), (b) Geometry of Para-OPE3 and Meta-OPE3 molecular junctions respectively; (c), (d) the thermoelectric voltages as a function of ΔT of Para-OPE3 and Meta-OPE3 respectively; (e) the transmission spectrum of Para-OPE3 and Meta-OPE3; (f) the slope of transmission at logarithm scale of Para-OPE3 and Meta-OPE3[69].

    图 6  (a)银/钒烯/银单分子结量子电流通路引起的自旋滤波示意图; (b)银/钒烯/银单分子结的自旋极化电导图; (c), (d)分别为银/钒烯/银和银/二茂铁/银单分子结的法诺系数; (e)银/钒烯/银单分子结垂直构型电子输运路径; (f)不同输运路径的自旋分辨电子输运透射率[73]

    Fig. 6.  (a) Schematic of the Ag/vanadocene/Ag molecular junction of spin filter that induced by quantum interference; (b) schematic of the Ag/vanadocene molecular spin polarization junction; (c), (d) Fano factor of Ag/vanadocene/Ag and Ag/ferrocene/Ag junctions respectively; (e) spin transmission across the Ag/vanadocene/Ag junction of perpendicular molecular junction; (f) spin transmission in different charge transport pathways[73].

    图 7  (a) SPPO分子加酸之后的2种共振式; (b), (c)分别为SPPO分子以及加酸之后形成的SPPO-H+的二维电导-长度统计图, 插入的小图为台阶长度统计图[74]; (d) DTB-A与DTB-B分子结示意图; (e), (f)分别为DTB-A与DTB-B加氟离子前后一维电导图[75]

    Fig. 7.  (a) Two resonance structures of SPPO after protonation with acid; (b), (c) the 1D conductance-displacement histogram of SPPO and SPPO-H+ respectively, where the inset is the displacement count histogram[74]; (d) the molecular structure of DTB-A and DTB-B; (e), (f) the one-dimensional conductance histograms of DTB-A and DTB-B in TMB solvent and introduction of the fluoride ion respectively[75].

  • [1]

    Xiang D, Wang X, Jia C, Lee T, Guo X 2016 Chem. Rev. 116 4318Google Scholar

    [2]

    Lü J T, Brandbyge M, Hedegård P, Todorov T N, Dundas D 2012 Phys. Rev. B 85 245444Google Scholar

    [3]

    Lü J T, Hedegård P, Brandbyge M 2011 Phys. Rev. Lett. 107 046801Google Scholar

    [4]

    Huang C, Jevric M, Borges A, et al. 2017 Nat. Commun. 8 15436Google Scholar

    [5]

    Sangtarash S, Huang C, Sadeghi H, et al. 2015 J. Am. Chem. Soc. 137 11425Google Scholar

    [6]

    Manrique D Z, Huang C, Baghernejad M, Zhao X, Al-Owaedi O A, Sadeghi H, Kaliginedi V, Hong W, Gulcur M, Wandlowski T, Bryce M R, Lambert C J 2015 Nat. Commun. 6 6389Google Scholar

    [7]

    Carlotti M, Kovalchuk A, Waechter T, Qiu X, Zharnikov M, Chiechi R C 2016 Nat. Commun. 7 13904Google Scholar

    [8]

    Huang B, Liu X, Yuan Y, Hong Z W, Zheng J F, Pei L Q, Shao Y, Li J F, Zhou X S, Chen J Z, Jin S, Mao B W 2018 J. Am. Chem. Soc. 140 17685Google Scholar

    [9]

    Liu J, Huang X, Wang F, Hong W 2019 Acc. Chem. Res. 52 151Google Scholar

    [10]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [11]

    McCreery R L, Bergren A J 2009 Adv. Mater. 21 4303Google Scholar

    [12]

    Sun L, Diaz-Fernandez Y A, Gschneidtner T A, Westerlund F, Lara-Avila S, Moth-Poulsen K 2014 Chem. Soc. Rev. 43 7378Google Scholar

    [13]

    Gao H J, Gao L 2010 Prog. Surf. Sci. 85 28Google Scholar

    [14]

    Lambert C J 2015 Chem. Soc. Rev. 44 875Google Scholar

    [15]

    Chen F, Hihath J, Huang Z, Li X, Tao N J 2007 Annu. Rev. Phys. Chem. 58 535Google Scholar

    [16]

    Su T A, Neupane M, Steigerwald M L, Venkataraman L, Nuckolls C 2016 Nat. Rev. Mater. 1 16002Google Scholar

    [17]

    Yoshizawa K 2012 Acc. Chem. Res. 45 1612Google Scholar

    [18]

    Zhao X, Geskin V, Stadler R 2017 J. Chem. Phys. 146 092308Google Scholar

    [19]

    Nelson E 1966 Phys. Rev. 150 1079Google Scholar

    [20]

    Gunasekaran S, Greenwald J E, Venkataraman L 2020 Nano Lett. 20 2843Google Scholar

    [21]

    Cheng P, Li Y, Chang S 2020 Acta Phys. Chim. Sin. 36 1909043Google Scholar

    [22]

    Zhang K, Wang C, Zhang M, Bai Z, Xie F F, Tan Y Z, Guo Y, Hu K J, Cao L, Zhang S 2020 Nat. Nanotechnol. 15 1019Google Scholar

    [23]

    Guo X, Liang W J 2019 Chin. Phys. Lett. 36 127301Google Scholar

    [24]

    Noguchi Y, Nagase T, Kubota T, Kamikado T, Mashiko S 2006 Thin Solid Films 499 90Google Scholar

    [25]

    Jia C, Ma B, Xin N, Guo X 2015 Acc. Chem. Res. 48 2565Google Scholar

    [26]

    Quintans C S, Andrienko D, Domke K F, Aravena D, Koo S, Díez-Pérez I, Aragonès A C 2021 Appl. Sci. 11 3317Google Scholar

    [27]

    Xiang D, Jeong H, Lee T, Mayer D 2013 Adv. Mater. 25 4845Google Scholar

    [28]

    Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J, Renaud N 2016 Nat. Chem. 8 1099Google Scholar

    [29]

    Moreno-Garcia P, Gulcur M, Manrique D Z, et al. 2013 J. Am. Chem. Soc. 135 12228Google Scholar

    [30]

    Su T A, Li H, Steigerwald M L, Venkataraman L, Nuckolls C 2015 Nat. Chem. 7 215Google Scholar

    [31]

    Bai J, Daaoub A, Sangtarash S, et al. 2019 Nat. Mater. 18 364Google Scholar

    [32]

    Hybertsen M S, Venkataraman L 2016 Acc. Chem. Res. 49 452Google Scholar

    [33]

    Xu B Q, Tao N J J 2003 Science 301 1221Google Scholar

    [34]

    Zhao Z, Liu R, Mayer D, et al. 2018 Small 14 1703815Google Scholar

    [35]

    Hong W, Valkenier H, Meszaros G, et al. 2011 Beilstein J. Nanotechnol. 2 699Google Scholar

    [36]

    Saraiva-Souza A, Smeu M, Zhang L, Souza Filho A G, Guo H, Ratner M A 2014 J. Am. Chem. Soc. 136 15065Google Scholar

    [37]

    Guedon C M, Valkenier H, Markussen T, et al. 2012 Nat. Nanotechnol. 7 304Google Scholar

    [38]

    Zhang J L, Zhong J Q, Lin J D, Hu W P, Wu K, Xu G Q, Wee A T S, Chen W 2015 Chem. Soc. Rev. 44 2998Google Scholar

    [39]

    Yin X, Zang Y, Zhu L, Low J Z, Liu Z F, Cui J, Neaton J B, Venkataraman L, Campos L M 2017 Sci. Adv. 3 eaao2615Google Scholar

    [40]

    Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550Google Scholar

    [41]

    Liu X, Sangtarash S, Reber D, et al. 2017 Angew. Chem. Int. Ed. 56 173Google Scholar

    [42]

    Yang Y, Gantenbein M, Alqorashi A, et al. 2018 J. Phys. Chem. C 122 14965Google Scholar

    [43]

    Nitzan A 2001 Annu. Rev. Phys. Chem. 52 681Google Scholar

    [44]

    Borges A, Fung E D, Ng F, Venkataraman L, Solomon G C 2016 J. Phys. Chem. Lett. 7 4825Google Scholar

    [45]

    Stefani D, Weiland K J, Skripnik M, et al. 2018 Nano Lett. 18 5981Google Scholar

    [46]

    Yang G, Sangtarash S, Liu Z, et al. 2017 Chem. Sci. 8 7505Google Scholar

    [47]

    Soni S, Ye G, Zheng J, Zhang Y, Asyuda A, Zharnikov M, Hong W, Chiechi R C 2020 Angew. Chem. Int. Ed. 59 14308Google Scholar

    [48]

    Li Y, Buerkle M, Li G, et al. 2019 Nat. Mater. 18 357Google Scholar

    [49]

    Greenwald J E, Cameron J, Findlay N J, et al. 2021 Nat. Nanotechnol. 16 313Google Scholar

    [50]

    He R, Schierning G, Nielsch K 2018 Adv. Mater. Technol. 3 1700256Google Scholar

    [51]

    Boulanger C 2010 J. Electron. Mater. 39 1818Google Scholar

    [52]

    Yang J, Yip H L, Jen A K Y 2013 Adv. Energy Mater. 3 549Google Scholar

    [53]

    Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873Google Scholar

    [54]

    Kroon R, Mengistie D A, Kiefer D, Hynynen J, Ryan J D, Yu L, Muller C 2016 Chem. Soc. Rev. 45 6147Google Scholar

    [55]

    Petsagkourakis I, Tybrandt K, Crispin X, Ohkubo I, Satoh N, Mori T 2018 Sci. Technol. Adv. Mater. 19 836Google Scholar

    [56]

    Zhang Q, Sun Y, Xu W, Zhu D 2014 Adv. Mater. 26 6829Google Scholar

    [57]

    Wang H, Yu C 2019 Joule 3 53Google Scholar

    [58]

    Russ B, Glaudell A, Urban J J, Chabinyc M L, Segalman R A 2016 Nat. Rev. Mater. 1 16050Google Scholar

    [59]

    Zhang F, Zang Y, Huang D, Di C A, Gao X, Sirringhaus H, Zhu D 2015 Adv. Funct. Mater. 25 3004Google Scholar

    [60]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [61]

    Xie F, Chen K Q, Peng X F, Wang Y G, Zhang Z H 2010 Phys. Lett. A 374 2062Google Scholar

    [62]

    Cui L, Hur S, Akbar Z A, Klockner J C, Jeong W, Pauly F, Jang S Y, Reddy P, Meyhofer E 2019 Nature 572 628Google Scholar

    [63]

    Lee W, Kim K, Jeong W, Angela Zotti L, Pauly F, Carlos Cuevas J, Reddy P 2013 Nature 498 209Google Scholar

    [64]

    Gehring P, Sowa J K, Hsu C, et al. 2021 Nat. Nanotechnol. 16 426Google Scholar

    [65]

    Almughathawi R, Hou S, Wu Q, Liu Z, Hong W, Lambert C 2021 ACS Sens. 6 470Google Scholar

    [66]

    Lambert C J, Sadeghi H, Al-Galiby Q H 2016 C. R. Phys. 17 1084Google Scholar

    [67]

    Strange M, Seldenthuis J S, Verzijl C J O, Thijssen J M, Solomon G C 2015 J. Chem. Phys. 142 084703Google Scholar

    [68]

    Sadeghi H 2019 J. Phys. Chem. C 123 12556Google Scholar

    [69]

    Miao R, Xu H, Skripnik M, et al. 2018 Nano Lett. 18 5666Google Scholar

    [70]

    Grace I M, Olsen G, Hurtado-Gallego J, et al. 2020 Nanoscale 12 14682Google Scholar

    [71]

    Rai D, Galperin M 2012 Phys. Rev. B 86 045420Google Scholar

    [72]

    Chen K W, Su Y H, Chen S H, Chen C L, Chang C R 2013 Phys. Rev. B 88 035443Google Scholar

    [73]

    Pal A N, Li D, Sarkar S, Chakrabarti S, Vilan A, Kronik L, Smogunov A, Tal O 2019 Nat. Commun. 10 5565Google Scholar

    [74]

    Zhang Y P, Chen L C, Zhang Z Q, et al. 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [75]

    Baghernejad M, van Dyck C, Bergfield J, et al. 2019 Chem. Eur. J 25 15141Google Scholar

    [76]

    Roura-Bas P, Tosi L, Aligia A A, Hallberg K 2011 Phys. Rev. B 84 073406Google Scholar

    [77]

    Mitchell A K, Pedersen K G L, Hedegard P, Paaske J 2017 Nat. Commun. 8 15210Google Scholar

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N、B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240174
    [2] 肖聪, 姚望. 范德瓦耳斯体系中的量子层电子学. 物理学报, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] 孙真昊, 管鸿明, 付雷, 沈波, 唐宁. 二维原子层谷电子学材料和器件. 物理学报, 2021, 70(2): 027302. doi: 10.7498/aps.70.20201415
    [4] 李瑞豪, 刘俊扬, 洪文晶. 单分子器件电输运中基于量子干涉效应的调控策略. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211819
    [5] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良. 分子结拉伸与界面识别: 破解4, 4′-二吡啶分子结拉伸过程中高低电导之谜. 物理学报, 2020, 69(20): 208502. doi: 10.7498/aps.69.20201297
    [6] 孙峰, 刘然, 索雨晴, 牛乐乐, 傅焕俨, 季文芳, 李宗良. 单分子器件的拉伸与断裂过程第一性原理研究: 末端基团效应. 物理学报, 2019, 68(17): 178502. doi: 10.7498/aps.68.20190693
    [7] 胡锐, 范志强, 张振华. 三角形石墨烯量子点阵列的磁电子学特性和磁输运性质. 物理学报, 2017, 66(13): 138501. doi: 10.7498/aps.66.138501
    [8] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [9] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [10] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文. 官能团对分子器件电输运特性的影响. 物理学报, 2008, 57(5): 3148-3154. doi: 10.7498/aps.57.3148
    [11] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [12] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [13] 李英德. 分子结电学特性的理论研究. 物理学报, 2006, 55(6): 2997-3002. doi: 10.7498/aps.55.2997
    [14] 马 勇, 邹 斌, 李宗良, 王传奎, 罗 毅. 六元杂环分子电学特性的理论研究. 物理学报, 2006, 55(4): 1974-1978. doi: 10.7498/aps.55.1974
    [15] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响. 物理学报, 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [16] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响. 物理学报, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [17] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
    [18] 王伟, 黄岚, 张宇, 李昌敏, 张海黔, 顾宁, 沈浩瀛, 陈堂生, 郝丽萍, 彭力, 赵丽新. 用分子自组装技术制备的单电子器件的Monte Carlo模拟. 物理学报, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
    [19] 李红海, 李英德, 王传奎. 分子和金表面相互作用的第一性原理研究. 物理学报, 2002, 51(6): 1239-1243. doi: 10.7498/aps.51.1239
    [20] 李英德, 李红海, 王传奎. 分子线的电子输运特性. 物理学报, 2002, 51(10): 2349-2354. doi: 10.7498/aps.51.2349
计量
  • 文章访问数:  4481
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2021-10-31
  • 上网日期:  2022-03-15
  • 刊出日期:  2022-03-20

/

返回文章
返回