搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元固溶体的配分函数

王德懋 许永焕 张宗燧

引用本文:
Citation:

二元固溶体的配分函数

王德懋, 许永焕, 张宗燧

CONFIGURATIONAL PARTITION FUNCTION OF BINARY SOLID SOLUTIONS

WANG TEH-MOU, HSU HOU-GHANG, CHANG TSUNG-SUI
PDF
导出引用
  • 这篇论文是作者之一的某一篇论文的继续。论文分四节。在第一节中我们讨论的对象是应用二元混合气体的买厄理论至一个在AB型晶体上的二元固溶体而获得的不可约集团积分B(v1,v2)。我们严格地证明了它们是某一些晶体常数z1,z2,…的线性函数。这些常数的定义为1/((1/2)N)∑λabλa′b′…,式中N代表晶点阵的点的总数,λab为邻矩阵,定义为λab=1 如果ab为近邻, =0,如果ab不是近邻, a,a′,…互不相等,b,b′,…也互不相等,而乘积λab…为全部下标的一个不可约乘积。证明共用了三个定理,同时也援用了一个所谓基本不可约集团的定义。在第二节中,我们应用了第一节的讨论对B(2,3)作了计算。在第三节中,我们应用第一节的结果,简化了求固溶体自由能的Kirkwood方法,同时也利用了简化的方法求得了自由能对(kT)-1展开的幂级数中(kT)-7的系数。比(kT)-7更早的项的系数早已在作者之一的一篇论文中求得。在第四节中,我们利用第一节的结果,证明了严格理论在忽略z2,z3,…时即成了Bethe理论的第一级近似。如果将自由能表为z1,z2,…的函数而称它们的系数为f1,f2,…,那末我们指出:只消研究在某些赝点阵上的固溶体的配分函数,便可以求出f1,f2,…,同时我们也指出:在这些赝点阵上的固溶体的配分函数是可以(而也容易)严格地求出的,因此以上的理论供给了我们一个较好的求固液体的自由能的方法。
    The present paper continues an earlier investigation of the application of Meyer's theory of a gas mixture of two components to a solid solution AB inhabiting a lattice of the type AB by considering the A. atoms inhabiting the two different sublattices as forming two different components. It is proved that the different irreducible cluster integrals are linear functions (and hence the free energy of the solid solution) of coordination numbers of the type ∑λabλa′b′λ……, where a, a′,…, b,b′… are different sites on the two sublattices (say a and β sublattices) and λab is a neighbour matrix defined by λab=1 when a, b are nearest neighbours =0 if otherwise,the product in (1) is irreducible with respect to the suffices (i. e. not divisible into parts with one or no suffice in common) and the summation is taken over all positions of a, a′,…,b b′,…, (a, a′, a",… as well as b, b′… being always different). Galling such coordination numbers as z1,z2,…and writing the free energy F of the solid solution as f0+z1f1, z2f2+…,(2) we point out that these Fi may be calculated from the free energies of the same solution, but now with the sites falling into groups each of which contains a small number of sites and does not contain sites which are neighbours of sites belonging to a different group. Since F of these solid solutions may be found easily (without approximations), we succeed in getting the required free energy F. Of course, this is an approximate method of calculating F, since we can not find the various Fi at one stroke.It is finally pointed out that such a method allows extension to lattices of different structure, to components more than two, to include interactions between next nearest neighbours, etc.
  • [1]
计量
  • 文章访问数:  7456
  • PDF下载量:  397
  • 被引次数: 0
出版历程
  • 收稿日期:  1957-05-13
  • 刊出日期:  1957-03-05

/

返回文章
返回