搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衬底加温和后续热退火法形成纳米硅晶粒成核势垒的比较

邓泽超 罗青山 褚立志 丁学成 梁伟华 傅广生 王英龙

引用本文:
Citation:

衬底加温和后续热退火法形成纳米硅晶粒成核势垒的比较

邓泽超, 罗青山, 褚立志, 丁学成, 梁伟华, 傅广生, 王英龙

Comparison of nucleation energy of nanoparticles Si formation in substrate heating and subsequent thermal annealing

Deng Ze-Chao, Luo Qing-Shan, Chu Li-Zhi, Ding Xue-Cheng, Liang Wei-Hua, Fu Guang-Sheng, Wang Ying-Long
PDF
导出引用
  • 在真空环境中,采用脉冲激光烧蚀技术,分别在衬底加温和室温条件下沉积制备了纳米Si薄膜.对在室温条件下制备得到的非晶Si薄膜,采用后续热退火实现其晶化.通过扫描电子显微镜、Raman散射仪和X射线衍射仪对制备的薄膜形貌、晶态成分进行表征,得到两种情况下纳米Si晶粒形成的阈值温度分别为700 ℃和850 ℃,通过定量计算比较了两种情况下晶粒成核势垒的大小,并从能量角度对阈值温度的差别进行了理论分析.
    In vacuum environment, the nano-crystalline silicon films were prepared by pulsed laser ablation at high temperature and room temperature respectively. The amorphous films prepared under normal temperature were thermal-annealed, which leads to crystallization. The morphology and compositon etc. of the samples were characterized by scanning electron microscopy, Raman scattering and X-ray diffraction. The results showed that the temperature threshold of Si nanoparticles formation was 700 ℃ and 850 ℃ respectively. The nucleation energy of the nanoparticles was obtained by quantitative calculation, and the reason of difference between the temperature threshold was discussed from the point of view of energy.
    • 基金项目: 国家自然科学基金(批准号:10774036)、河北省自然科学基金(批准号: E2008000631)和河北大学博士启动基金(批准号: Y2007100)资助的课题.
    [1]

    Osborne I S 2002 Science 296 2299

    [2]

    Qiu S H, Chen C Z, Liu C Q, Wu Y D, Li P, Lin X Y, Yu C Y 2009 Acta Phys. Sin. 58 565 (in Chinese )[邱胜桦、陈城钊、刘翠青、吴燕丹、李 平、林璇英、余楚迎 2009 物理学报 58 565]

    [3]

    Lee H S, Choi S, Kim S W 2009 Thin Solid Films 517 4070

    [4]

    Her Y C, Wu C L 2004 J. Appl. Phys. 96 5563

    [5]

    Wang Y L, Zhou Y, Chu L Z, Fu G S, Peng Y C 2005 Acta Phys. Sin. 54 1683 (in Chinese) [王英龙、周 阳、褚立志、傅广生、彭英才 2005 物理学报 54 1683]

    [6]

    Wang Y L, Deng Z C, Fu G S, Zhou Y, Chu L Z, Peng Y C 2006 Thin Solid Films 515 1897

    [7]

    Wang Y L, Li Y L, Fu G S 2006 Nucl. Instrum. Meth. B 252 245

    [8]

    Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W 2005 Europhys. Lett. 69 758

    [9]

    Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志、卢丽芳、王英龙、傅广生2007 物理学报 56 3374]

    [10]

    Ossadnik C, Veprek S, Gregora I 1999 Thin Solid Films 337 148

    [11]

    Wang Y L, Deng Z C, Chu L Z, Fu G S, Peng Y C 2009 Europhys. Lett. 86 15001

  • [1]

    Osborne I S 2002 Science 296 2299

    [2]

    Qiu S H, Chen C Z, Liu C Q, Wu Y D, Li P, Lin X Y, Yu C Y 2009 Acta Phys. Sin. 58 565 (in Chinese )[邱胜桦、陈城钊、刘翠青、吴燕丹、李 平、林璇英、余楚迎 2009 物理学报 58 565]

    [3]

    Lee H S, Choi S, Kim S W 2009 Thin Solid Films 517 4070

    [4]

    Her Y C, Wu C L 2004 J. Appl. Phys. 96 5563

    [5]

    Wang Y L, Zhou Y, Chu L Z, Fu G S, Peng Y C 2005 Acta Phys. Sin. 54 1683 (in Chinese) [王英龙、周 阳、褚立志、傅广生、彭英才 2005 物理学报 54 1683]

    [6]

    Wang Y L, Deng Z C, Fu G S, Zhou Y, Chu L Z, Peng Y C 2006 Thin Solid Films 515 1897

    [7]

    Wang Y L, Li Y L, Fu G S 2006 Nucl. Instrum. Meth. B 252 245

    [8]

    Fu G S, Wang Y L, Chu L Z, Zhou Y, Yu W 2005 Europhys. Lett. 69 758

    [9]

    Chu L Z, Lu L F, Wang Y L, Fu G S 2007 Acta Phys. Sin. 56 3374 (in Chinese) [褚立志、卢丽芳、王英龙、傅广生2007 物理学报 56 3374]

    [10]

    Ossadnik C, Veprek S, Gregora I 1999 Thin Solid Films 337 148

    [11]

    Wang Y L, Deng Z C, Chu L Z, Fu G S, Peng Y C 2009 Europhys. Lett. 86 15001

计量
  • 文章访问数:  6633
  • PDF下载量:  775
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-02
  • 修回日期:  2009-11-24
  • 刊出日期:  2010-07-15

/

返回文章
返回