-
利用齐次平衡方法,将(2+1)维 Konopelchenko-Dubrovsky方程转化为两个变量分离的线性偏微分方程,然后采用三种不同的函数假设,得到相应的常系数微分方程,通过求解特征方程,方便地构造出Konopelchenko-Dubrovsky方程新的多孤子解.
-
关键词:
- (2+1)维 Konopelchenko-Dubrovsky 方程 /
- 齐次平衡法 /
- 多孤子解
In this paper, using the homogeneous balance method, the (2+1) dimensional Konopelchenko-Dubrovsky equations are converted into two variable-separated linear partial differential equations. for three different function assumptions, the constant coefficient differential equations are obtained, respectively. By solving the eigenequations, new multisoliton solutions of the KD equations are constructed conveniently.-
Keywords:
- (2+1) dimensional Konopelchenko-Dubrovsky equations /
- homogeneous balance method /
- multisoliton solutions
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 Appl.Phys. 53 249
[3] Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248(in Chinese) [朱加民、马正义、郑春龙 2004 物理学报 53 3248]
[4] Zhang J F 2000 J. Huaihua Teachers College 19 11(in Chinese)[张解放 2000 怀化师专学报 19 11]
[5] Fan E G, Zhang H Q 1998 Phys. Lett. A 246 403
[6] Lou S Y 2002 J. Math. Phys. 22 4078
[7] Wang M L 1996 Phys. Lett. A 213 279
[8] Fan E G 2003 J. Phys. A 36 7009
[9] Zhang J F 1998 Acta Phys. Sin. 47 1416 (in Chinese) [张解放 1998 物理学报 47 1416]
[10] Konopelchenko B G, Dubrovsky V G 1984 Phys. Lett. A 102 15
[11] Maccari A 1999 J. Math. Phys. 40 3971
[12] Song L N, Zhang H Q 2006 Commun. Theor.Phys. 45 769
[13] Abdul M J, Waz W 2007 Math. Comput.Modell. 45 473
[14] Zhang J L, Zhang L Y, Wang M L 2005 Chin. Quart.J. of Math. 20 72
[15] Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. 44 407
[16] Huang W H, Liu M S, Yang H 2004 J. Huzhou Teachers College 26 45 (in Chinese)[黄文华、刘毛生、杨 慧 2004 湖州师范学院学报 26 45]
[17] Lin J, Lou S Y, Wang K L 2001 Chin. Phys.Lett. 9 1173
[18] Zhao H, Han J G, Wang W T 2006 Czech. J. Phys. 56 1381
-
[1] Cross M C, Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1974 Appl.Phys. 53 249
[3] Zhu J M, Ma Z Y, Zheng C L 2004 Acta Phys. Sin. 53 3248(in Chinese) [朱加民、马正义、郑春龙 2004 物理学报 53 3248]
[4] Zhang J F 2000 J. Huaihua Teachers College 19 11(in Chinese)[张解放 2000 怀化师专学报 19 11]
[5] Fan E G, Zhang H Q 1998 Phys. Lett. A 246 403
[6] Lou S Y 2002 J. Math. Phys. 22 4078
[7] Wang M L 1996 Phys. Lett. A 213 279
[8] Fan E G 2003 J. Phys. A 36 7009
[9] Zhang J F 1998 Acta Phys. Sin. 47 1416 (in Chinese) [张解放 1998 物理学报 47 1416]
[10] Konopelchenko B G, Dubrovsky V G 1984 Phys. Lett. A 102 15
[11] Maccari A 1999 J. Math. Phys. 40 3971
[12] Song L N, Zhang H Q 2006 Commun. Theor.Phys. 45 769
[13] Abdul M J, Waz W 2007 Math. Comput.Modell. 45 473
[14] Zhang J L, Zhang L Y, Wang M L 2005 Chin. Quart.J. of Math. 20 72
[15] Jiao X Y, Wang J H, Zhang H Q 2005 Commun. Theor. Phys. 44 407
[16] Huang W H, Liu M S, Yang H 2004 J. Huzhou Teachers College 26 45 (in Chinese)[黄文华、刘毛生、杨 慧 2004 湖州师范学院学报 26 45]
[17] Lin J, Lou S Y, Wang K L 2001 Chin. Phys.Lett. 9 1173
[18] Zhao H, Han J G, Wang W T 2006 Czech. J. Phys. 56 1381
计量
- 文章访问数: 8957
- PDF下载量: 1120
- 被引次数: 0