搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮区域熔炼法制备LaB6单晶体与发射性能研究

包黎红 张久兴 周身林 张宁

引用本文:
Citation:

悬浮区域熔炼法制备LaB6单晶体与发射性能研究

包黎红, 张久兴, 周身林, 张宁

Floating zone growth and emission properties of single crystal LaB6cathode

Bao Li-Hong, Zhang Jiu-Xing, Zhou Shen-Lin, Zhang Ning
PDF
导出引用
  • 采用区域熔炼法成功制备出了高质量,高纯度,大尺寸的LaB6单晶体. 系统分析了制备过程中每个参数对LaB6单晶生长的影响,确定了晶体生长最佳工艺为:样品转速为30 r/min,生长速度为810 mm/h. 分析了单晶LaB6 (100) 晶面的热电子发射性能,结果表明,当阴极温度为1873 K时,最大热发射电流密度为44.36 A/cm2;利用 Richardson 直线法求出了绝对零度逸出功和有效逸出功分别为1.99和2.59 eV. 场发射测试结果表明,单晶LaB6场发射单尖最大场发射电流密度达到4.9106 A/cm2,场发射因子为41500 cm-1,表现出良好的场发射性能. 因此单晶LaB6作为热阴极和冷阴极都具有很广阔的应用前景.
    The high quality, high purity and large size Lanthanum hexaborides (LaB6) single crystals have been successfully grown by optical floating zone method. The optimum crystal growth parameters are listed as follow: sample rotation rate is 30 r/min and the growth rate is 810 mm/h. The largest thermionic emission current density of (100) crystal surface is 44.36 A/cm2 at 1873 K. The work function at absolute zero is calculated to be 1.99 eV by Richardson line method, and the average value of effective work functions at different temperatures are calculated to be 2.59 eV. The field emission characteristic of single crystal LaB6 field emitting single tip show that the maximum field emission current density is 4.9106 Acm-2 and the field enhancement factor is calculated to be 41500 cm-1, indicating excellent field emission performance. Thus, the single crystal is a promising cathode material for practical applications regarding to its excellent thermionic emission or field emission properties.
    • 基金项目: 国家自然科学基金(批准号:50871002)资助的课题.
    [1]

    Lafferty J M 1951 J. Appl. Phys. 22 299

    [2]

    Mandrus D, Sales B C, Jin R 2001 Phys. Rev. B 64 012302

    [3]
    [4]
    [5]

    Nishitani R, Aono M, TanaKa T, Kawai S, Iwasaki H, Oshima C, Nakamura S 1980 Surf. Sci. 95 341

    [6]
    [7]

    Futamoto M, Nakazawa M, Kawabe U 1980 Surf. Sci. 100 470

    [8]
    [9]

    Rokuta E, Yamamoto N, Hasegawa Y, Trenary M, Nagao T, Oshima C, Otani S 1998 Surf. Sci. 416 363

    [10]
    [11]

    Zhang H, Zhang Q, Zhao G P, Tang J, Zhou O, Qin L C 2005 J. Am. Chem.Soc. 127 13120

    [12]
    [13]

    Zhang H, Zhang Q, Tang J, Qin L C 2005 J. Am. Chem. Soc. 127 2862

    [14]

    Zhang H, Zhang Q, Tang J, Qin L C 2005 J. Am. Chem. Soc. 127 8002

    [15]
    [16]
    [17]

    Late D J, Date K S, More M A, Misra P, Singh B N, Kukreja L M, Dharmadhikari C V, Joag D S 2008 Nanotechnology 19 265605

    [18]
    [19]

    Late D J, More M A, Misra P, Singh B N, Kukreja L M, Joag D S 2007 Ultramicroscopy 107 825

    [20]
    [21]

    Olsen G H, Cafiero A V 1978 J. Crystal Growth 44 287

    [22]
    [23]

    Mituko O 1976 J. Crystal Growth 33 193

    [24]

    Aida T, Fukazawa T 1987 J. Crystal Growth 80 9

    [25]
    [26]
    [27]

    Wang S, Pomjakushina E, Shiroka T, Deng G, Nikseresht N, Ruegg C, Conder K 2010 J. Crystal Growth 313 51

    [28]
    [29]

    Souptel D, Behr G, Ivanenko L, Vinzelberg H, Schumann J 2002 J. Crystal Growth 244 296

    [30]
    [31]

    Uijttewaal M A, DeWijs G A, Groot R A 2006 J. Phys. Chem. B 110 18459

    [32]
    [33]

    Gesley M, Swanson L W 1984 Cystal Growth 146 583

    [34]
    [35]

    Yamamoto N, Rokuta E, Hasegawa Y, Nagao T, Trenary M, Oshima C, Otani S 1996 Surf. Sci. 348 133

    [36]
    [37]

    Jin X, Liu X S, Huang S R, Cai G H 1995 High Power Laser and Particle Beams 7 555 (in Chinese) [金 晓、刘锡三、黄孙仁、蔡公和 1995 强激光与粒子束 7 555]

    [38]

    Wang H B, Xu Z, Lu H P, Deng R P, Yang X, Gan K Y, Jin X, Li M, Liu X S 2005 High Power Laser and Particle Beams 17 932 (in Chinese) [王汉斌、许 州、卢和平、邓仁培、杨 肖、甘孔银、金晓、黎 明、刘锡三 2005 强激光与粒子束 17 932]

    [39]
    [40]

    Yao J F, Chen X, Jiang J P, Li J, Gao Y J, Yan S Q, Chen Q L 2002 Vacuum Electronics 1 1 (in Chinese) [姚剑峰、陈 旭、江剑平、李 季、高玉娟、阎肃秋、陈其略 2002 真空电子技术 1 1]

    [41]
    [42]

    Futamoto M, Nakazawa M and Kawabe U 1980 Surf. Sci. 100 470

    [43]
    [44]

    Swanson L W, Mcneely D R 1979 Surf. Sci. 83 11

    [45]
    [46]

    Cheng H, Jiang J P 1987 Cathode Electronics (Xi'an: Northwest Institute of Telecommunication Publishing House) p84 (in Chinese) [承 欢、江剑平 1986 阴极电子学 (西安: 西北电讯工程学院出版社) 第84页]

    [47]
    [48]

    Wang X J,Lin Z L, Qi K C, Chen Z X, Wang Z G, Jiang Y D 2007 Chinese Journal of Luminescence 28 429 (in Chinese) [王小菊、林祖伦、祁康成、陈泽祥、汪志刚、蒋亚东 2007 发光材料 28 429]

    [49]
  • [1]

    Lafferty J M 1951 J. Appl. Phys. 22 299

    [2]

    Mandrus D, Sales B C, Jin R 2001 Phys. Rev. B 64 012302

    [3]
    [4]
    [5]

    Nishitani R, Aono M, TanaKa T, Kawai S, Iwasaki H, Oshima C, Nakamura S 1980 Surf. Sci. 95 341

    [6]
    [7]

    Futamoto M, Nakazawa M, Kawabe U 1980 Surf. Sci. 100 470

    [8]
    [9]

    Rokuta E, Yamamoto N, Hasegawa Y, Trenary M, Nagao T, Oshima C, Otani S 1998 Surf. Sci. 416 363

    [10]
    [11]

    Zhang H, Zhang Q, Zhao G P, Tang J, Zhou O, Qin L C 2005 J. Am. Chem.Soc. 127 13120

    [12]
    [13]

    Zhang H, Zhang Q, Tang J, Qin L C 2005 J. Am. Chem. Soc. 127 2862

    [14]

    Zhang H, Zhang Q, Tang J, Qin L C 2005 J. Am. Chem. Soc. 127 8002

    [15]
    [16]
    [17]

    Late D J, Date K S, More M A, Misra P, Singh B N, Kukreja L M, Dharmadhikari C V, Joag D S 2008 Nanotechnology 19 265605

    [18]
    [19]

    Late D J, More M A, Misra P, Singh B N, Kukreja L M, Joag D S 2007 Ultramicroscopy 107 825

    [20]
    [21]

    Olsen G H, Cafiero A V 1978 J. Crystal Growth 44 287

    [22]
    [23]

    Mituko O 1976 J. Crystal Growth 33 193

    [24]

    Aida T, Fukazawa T 1987 J. Crystal Growth 80 9

    [25]
    [26]
    [27]

    Wang S, Pomjakushina E, Shiroka T, Deng G, Nikseresht N, Ruegg C, Conder K 2010 J. Crystal Growth 313 51

    [28]
    [29]

    Souptel D, Behr G, Ivanenko L, Vinzelberg H, Schumann J 2002 J. Crystal Growth 244 296

    [30]
    [31]

    Uijttewaal M A, DeWijs G A, Groot R A 2006 J. Phys. Chem. B 110 18459

    [32]
    [33]

    Gesley M, Swanson L W 1984 Cystal Growth 146 583

    [34]
    [35]

    Yamamoto N, Rokuta E, Hasegawa Y, Nagao T, Trenary M, Oshima C, Otani S 1996 Surf. Sci. 348 133

    [36]
    [37]

    Jin X, Liu X S, Huang S R, Cai G H 1995 High Power Laser and Particle Beams 7 555 (in Chinese) [金 晓、刘锡三、黄孙仁、蔡公和 1995 强激光与粒子束 7 555]

    [38]

    Wang H B, Xu Z, Lu H P, Deng R P, Yang X, Gan K Y, Jin X, Li M, Liu X S 2005 High Power Laser and Particle Beams 17 932 (in Chinese) [王汉斌、许 州、卢和平、邓仁培、杨 肖、甘孔银、金晓、黎 明、刘锡三 2005 强激光与粒子束 17 932]

    [39]
    [40]

    Yao J F, Chen X, Jiang J P, Li J, Gao Y J, Yan S Q, Chen Q L 2002 Vacuum Electronics 1 1 (in Chinese) [姚剑峰、陈 旭、江剑平、李 季、高玉娟、阎肃秋、陈其略 2002 真空电子技术 1 1]

    [41]
    [42]

    Futamoto M, Nakazawa M and Kawabe U 1980 Surf. Sci. 100 470

    [43]
    [44]

    Swanson L W, Mcneely D R 1979 Surf. Sci. 83 11

    [45]
    [46]

    Cheng H, Jiang J P 1987 Cathode Electronics (Xi'an: Northwest Institute of Telecommunication Publishing House) p84 (in Chinese) [承 欢、江剑平 1986 阴极电子学 (西安: 西北电讯工程学院出版社) 第84页]

    [47]
    [48]

    Wang X J,Lin Z L, Qi K C, Chen Z X, Wang Z G, Jiang Y D 2007 Chinese Journal of Luminescence 28 429 (in Chinese) [王小菊、林祖伦、祁康成、陈泽祥、汪志刚、蒋亚东 2007 发光材料 28 429]

    [49]
  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 刘洪亮, 郭志迎, 袁晓峰, 高倩倩, 段欣雨, 张忻, 张久兴. 典型二元单晶REB6的电子结构和发射性能. 物理学报, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [3] 杨孟骐, 姬宇航, 梁琦, 王长昊, 张跃飞, 张铭, 王波, 王如志. 四方结构GaN纳米线制备、掺杂调控及其场发射性能研究. 物理学报, 2020, 69(16): 167805. doi: 10.7498/aps.69.20200445
    [4] 刘洪亮, 张忻, 王杨, 肖怡新, 张久兴. 单晶LaB6阴极材料典型晶面的电子结构和发射性能研究. 物理学报, 2018, 67(4): 048101. doi: 10.7498/aps.67.20172187
    [5] 包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser. 单晶CeB6发射性能及磁电阻各向异性研究. 物理学报, 2017, 66(18): 186102. doi: 10.7498/aps.66.186102
    [6] 沈震, 陈程程, 王如志, 王波, 严辉. 多层纳米AlGaN薄膜制备及其场发射性能. 物理学报, 2016, 65(23): 236803. doi: 10.7498/aps.65.236803
    [7] 叶芸, 陈填源, 郭太良, 蒋亚东. 磁场辅助热处理金属化碳纳米管场发射性能. 物理学报, 2014, 63(8): 086802. doi: 10.7498/aps.63.086802
    [8] 王京, 王如志, 赵维, 陈建, 王波, 严辉. 硅掺杂铝镓氮薄膜场发射性能研究. 物理学报, 2013, 62(1): 017702. doi: 10.7498/aps.62.017702
    [9] 李镇江, 李伟东. 合成温度对Ce掺杂SiC纳米线的制备及场发射性能的影响研究. 物理学报, 2013, 62(9): 097902. doi: 10.7498/aps.62.097902
    [10] 王益军, 王六定, 杨敏, 严诚, 王小冬, 席彩萍, 李昭宁. 锥顶碳纳米管的结构稳定性与场致发射性能. 物理学报, 2011, 60(7): 077303. doi: 10.7498/aps.60.077303
    [11] 秦玉香, 胡 明. 钛碳化物改性碳纳米管的场发射性能. 物理学报, 2008, 57(6): 3698-3702. doi: 10.7498/aps.57.3698
    [12] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [13] 肖 竞, 柏 鑫, 张耿民. 整齐排列的氧化锌纳米针阵列的场发射性能. 物理学报, 2008, 57(11): 7057-7062. doi: 10.7498/aps.57.7057
    [14] 王小霞, 廖显恒, 罗积润, 赵青兰. 亚微米电子发射材料的合成及发射性能. 物理学报, 2008, 57(3): 1924-1929. doi: 10.7498/aps.57.1924
    [15] 罗 敏, 王新庆, 葛洪良, 王 淼, 徐亚伯, 陈 强, 李利培, 陈 磊, 管高飞, 夏 娟, 江 丰. 排列形状及阵列数目对纳米导线阵列场发射性能的影响. 物理学报, 2006, 55(11): 6061-6067. doi: 10.7498/aps.55.6061
    [16] 倪赛力, 常永勤, 龙 毅, 叶荣昌. 氧化锌纳米棒场发射性能研究. 物理学报, 2006, 55(10): 5409-5412. doi: 10.7498/aps.55.5409
    [17] 李 强, 梁二军. 碳、碳氮和硼碳氮纳米管场发射性能的比较研究. 物理学报, 2005, 54(12): 5931-5936. doi: 10.7498/aps.54.5931
    [18] 丁 佩, 晁明举, 梁二军, 郭新勇. 不同氮源制备CNx纳米管薄膜及其低场致电子发射性能. 物理学报, 2005, 54(12): 5926-5930. doi: 10.7498/aps.54.5926
    [19] 丁 佩, 晁明举, 梁二军, 郭新勇, 杜祖亮. CNx纳米管的制备、结构观察及低场致电子发射性能研究. 物理学报, 2004, 53(8): 2786-2791. doi: 10.7498/aps.53.2786
    [20] 赵建平, 王曦, 陈智颖, 杨石奇, 柳襄怀, 施天生. 非晶金刚石薄膜的场致电子发射性能研究. 物理学报, 1997, 46(7): 1444-1448. doi: 10.7498/aps.46.1444
计量
  • 文章访问数:  8624
  • PDF下载量:  719
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-28
  • 修回日期:  2011-05-19
  • 刊出日期:  2011-05-05

/

返回文章
返回