搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流法测试薄膜热导的数值模拟研究

黎威志 王军

引用本文:
Citation:

直流法测试薄膜热导的数值模拟研究

黎威志, 王军

Numerical simulation of direct current method of measuring thermal conductivities of thin films

Li Wei-Zhi, Wang Jun
PDF
导出引用
  • 薄膜的热导率是薄膜热学性能的最重要参数之一, 相对于多数文献的二维或三维测试结构, 本文采用一维双端支撑悬臂梁结构研究了薄膜热导率的测试方法. 悬臂梁包含上层的兼做加热电阻及测温电阻的金属条和下层的待测试薄膜. 利用一维热传导方程推导并获得了在直流电流加热条件下, 悬臂梁的温升分布(T)及加热电阻两端电压增量(U) 表达式与薄膜热导率之间的关系. 采用ANSYS有限元软件仿真了不同仿真参数时的T及U, 仿真结果与温升表达式计算结果符合得很好. 与常用的3倍频率法(3) 薄膜热学性能测试方法相比, 一维悬臂梁直流法测试结构及手段较为简单且可以获得更为精确的结果.
    Thermal conductivity is one of the most important physical properties of thin films. Different from two- or three-dimensional measurement structures in most reports, in this work, one-dimensional (1D) two-end supported cantilever beam is provided. The structure of cantilever includes a metal heater (which also serves as a thermometer) and thin film(s) underneath for measurement. 1D heat flow equation is employed to obtain the expression of temperature rise distribution (T(x)) along the cantilever beam and voltage drop changes along the heater (U) when a direct current (DC) follows in the heater. To confirm the correctness of theoretical deduction, ANSYS finite element software is employed to simulate T(x) and U. Results demonstrate that the simulations are in good agreement with the theoretic calculations obtained from expressions of T(x) and U. Compared with conventional 3-times frequency (3 ) method, the DC method with 1D cantilever beam is relatively simple and accurate.
    • 基金项目: 国家自然科学基金(批准号: 60736005, 61006036) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60736005, 61006036).
    [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • [1]

    Kruse P W, Skatrud D D 1997 Uncooled Infrared Imaging Arrays and Systems (1st Ed.) (San Diego: Academic Press) pp17--75

    [2]

    Greenspan J 1998 MS Dissertation (Montreal: McGill University)

    [3]

    Sberveglieri G, Hellmich W, Muller G 1997 Microsyst. Technol. 3 183

    [4]

    Eaton W P, Smith J H 1997 Smart Mater. Struct. 6 530

    [5]

    Yang J, Zhang J, Zhang H, Zhu Y 2010 Rev. Sci. Instrum. 81 114902

    [6]

    Zhang Y L, Hapenciuc C L, Castillo, Borca-Tasciuc T, Mehta R J, Karthik C, Ramanath G 2010 Appl. Phys. Lett. 96 062107

    [7]

    Mavrokefalos A, Pettes M T, Zhou F, Shi L 2007 Rev. Sci. Instrum. 78 034901

    [8]

    Jain A, Goodson K E 2008 J. Heat Transfer 130 102402

    [9]

    Paul O, Ruther P, Plattner L, Baltes H 2000 IEEE Trans. Semicond. Manuf. 13 159

    [10]

    Volklein F 1990 Thin Solid Films 188 27

    [11]

    Arx M, Paul O, Baltes H 2000 J. Microelectromech. Syst. 9 136

    [12]

    Cahill D G, Fischer H E, Klitsner T, Swartz E T, Pohl R O 1989 J. Vac. Sci. Technol. A 7 1259

    [13]

    Mastrangelo C H, Tai Y C, Muller R S 1990 Sensors and Actuators A 21-23 856

    [14]

    Cahill D G 1990 Rev. Sci. Instrum. 61 802

    [15]

    Eriksson P, Anderson J Y, Stemme G 1997 J. Microelectromech. Syst. 6 55

    [16]

    Sultan R, Avery A D, Stiehl G, Zink B L 2009 J. Appl. Phys. 105 043501

    [17]

    Yamane T, Nagai N, Katayama S, Todoki M 2002 J. Appl. Phys. 91 9772

    [18]

    Qiu L, Wang D W, Zheng X H, Su G P 2011 Rev. Sci. Instrum. 82 045106

    [19]

    Benard W L, Kahn H, Heuer A H, Huff M 1998 J. Microelectromech. Syst. 7 245

    [20]

    Brand O, Fedder G K, (translated by Huang Q A, Qin M) 2007 CMOS MEMS Technology and Applications (Nanjing: Southeast University Press) pp62--119 (in Chinese) [Brand O, Fedder G K, (黄庆安, 秦明译) CMOS MEMS 技术与应用 (南京: 东南大学出版社) 第62---119页]

    [21]

    Zhu X Y 2007 College Physics Experiment Course (1st Ed.) (Beijing: Science Press) pp311--313 (in Chinese) [朱孝义 2007 大学物理实验教程(第一版) (北京: 科学出版社) 第311---313页]

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展. 物理学报, 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运. 物理学报, 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [3] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [4] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响. 物理学报, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [5] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [6] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [7] 吴文智, 高来勖, 孔德贵, 高扬, 冉玲苓, 柴志军. 基于飞秒瞬态反射/透射技术的纳米Au半透膜热效应研究. 物理学报, 2016, 65(4): 046801. doi: 10.7498/aps.65.046801
    [8] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [9] 陈福振, 强洪夫, 高巍然. 气粒两相流传热问题的光滑离散颗粒流体动力学方法数值模拟. 物理学报, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [10] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究. 物理学报, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [11] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究. 物理学报, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [12] 马艳红, 仝小龙, 朱彬, 张大义, 洪杰. 金属橡胶热物理性能理论与试验研究. 物理学报, 2013, 62(4): 048101. doi: 10.7498/aps.62.048101
    [13] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应. 物理学报, 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [14] 张世来, 刘福生, 彭小娟, 张明建, 李永宏, 马小娟, 薛学东. 纳秒尺度金属熔化相变数值模拟及实验验证. 物理学报, 2011, 60(1): 014401. doi: 10.7498/aps.60.014401
    [15] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象. 物理学报, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [16] 程荣军, 程玉民. 带源参数的热传导反问题的无网格方法. 物理学报, 2007, 56(10): 5569-5574. doi: 10.7498/aps.56.5569
    [17] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [18] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成. 物理学报, 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] 武宇. 带圆孔的方柱中的热传导. 物理学报, 1963, 19(4): 268-270. doi: 10.7498/aps.19.268
    [20] 王竹溪. 物质内部有辐射的热传导问题. 物理学报, 1962, 18(1): 11-26. doi: 10.7498/aps.18.11
计量
  • 文章访问数:  5615
  • PDF下载量:  597
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-15
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-06-05

/

返回文章
返回