-
在多体微扰理论的框架下, 分别采用G0W0方法和准粒子自洽GW方法计算3C-SiC和2H-SiC的准粒子能级. 由一个平均Monkhorst-Pack网格点上的准粒子能级和准粒子波函数出发, 结合最局域Wannier函数插值, 得到3C-SiC和2H-SiC的自洽准粒子能带结构. 3C-SiC的价带顶在点, 导带底在X点. DFT-LDA, G0W0和准粒子自洽GW给出的3C-SiC间接禁带宽度分别为 1.30 eV, 2.23 eV和2.88 eV. 2H-SiC价带顶在 点, 导带底在K点. 采用DFT-LDA, G0W0和准粒子自洽GW方法得到的间接禁带宽度分别为2.12 eV, 3.12 eV和 3.75 eV. 计算基于赝势方法, 对于3C-SiC和2H-SiC的准粒子自洽GW计算给出的禁带宽度均比实验值略大.
-
关键词:
- GW方法 /
- 最局域Wannier函数 /
- SiC /
- 能带结构
Quasiparticle band structures of 3C-SiC and 2H-SiC were calculated using ab initio many body perturbation theory with GW approximation. Quasiparticle energies along high symmetry lines in the first Brillouin zone were evaluated using quasiparitcle self-consistent GW (QPscGW) method and the Maximally-localized Wannier Function interpolation. Both 3C-SiC and 2H-SiC have an indirect band gap with valence band maximum locating at point. The conduction band maximum of 3C-SiC is at X point. As a comparison, band gaps of 3C-SiC calculated by DFT-LDA, one-shot G0W0 and QPscGW are 1.30 eV, 2.23 eV and 2.88 eV respectively. The conduction band minimum of 2H-SiC locates at K point with a band gap of 2.12 eV, 3.12 eV and 3.75 eV predicted by DFT-LDA, one-shot G0W0 and QPscGW respectively. Lattice parameters calculated by DFT-LDA were used in this work. The QPscGW calculations are based on pseudopotential method, predicting slightly larger bandgaps for both 3C-SiC and 2H-SiC comparing with experiments.-
Keywords:
- GW method /
- Maximally-localized Wannier Function /
- Silicon carbide /
- band structure
[1] Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402
[2] Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169
[3] Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390
[4] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847
[5] Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109
[6] Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109
[7] Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685
[8] Holm B, Barth U V 1998 Phys. Rev. B 57 2108
[9] Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221
[10] Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662
[11] Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401
[12] Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701
[13] Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406
[14] Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102
[15] Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257
[16] Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485
[17] Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715
[18] Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263
[19] Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105
[20] Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147
[21] Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122
[22] Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897
[23] Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950
[24] Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795
[25] Schlegel H B 1982 J. Comp. Chem. 3 214
[26] van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402
[27] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582
[28] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558
[29] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478
[30] Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81
[31] Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163
[32] Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526
-
[1] Schilfgaarde M V, Kotani T K, Faleev S 2006 Phys. Rev. Lett 96 226402
[2] Godby R W, Needs R J 1989 Phys. Rev. Lett. 62 1169
[3] Hybertsen M S, Louie S G 1986 Phys. Rev. B 34 5390
[4] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847
[5] Souza I, Marzari N, Vanderbilt D 2001 Phys. Rev. B 65 035109
[6] Hamann D R, Vanderbilt D 2009 Phys. Rev. B 79 045109
[7] Mostofi A A, Yates J R, Lee Y-S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685
[8] Holm B, Barth U V 1998 Phys. Rev. B 57 2108
[9] Aryasetiawan F, Gunnarsson O 1995 Phys. Rev. Lett. 74 3221
[10] Schone W D, Eguiluz A G 1998 Phys. Rev. Lett. 81 1662
[11] Ku W, Eguiluz A G 2002 Phys. Rev. Lett. 89 126401
[12] Delaney K, Garcia-Conzalez P, Rubio A, Rinke P, Godby R W 2004 Phys. Rev. Lett. 93 249701
[13] Faleev S V, Schilfgaarde M V, Kotani T 2004 Phys. Rev. Lett. 93 126406
[14] Bruneval F, Vast N, Reining L 2006 Phys. Rev. B 74 045102
[15] Persson C, Lindefelt U 1996 Phys. Rev. B 54 10257
[16] Park C H, Cheong B H, Lee K H, Chang K J 1994 Phys. Rev. B 49 4485
[17] Yeh C Y, Wei S H, Zunger A 1994 Phys. Rev. B 50 2715
[18] Jiang Z, Xu X, Wu H S, Zhang F, Jin Z 2002 Solid State Commun. 123 263
[19] Jia R X, Zhang Y M, Zhang Y M 2010 Chin. Phys. B 19 107105
[20] Ching W Y, Xu Y N, Rulis P, Ouyang L 2006 Mater. Sci. Eng. A 422 147
[21] Gao S P, Pickard C J, Payne M C, Zhu J, Yuan J 2008 Phys. Rev. B 77 115122
[22] Wenzien B, Käckell P, Bechstedt F, Cappellini G 1995 Phys. Rev. B 52 10897
[23] Backes W H, Bobbert P A, van Haeringen W 1995 Phys. Rev. B 51 4950
[24] Ummels R T M, Bobbert P A, van Haeringen W 1998 Phys. Rev. B 58 6795
[25] Schlegel H B 1982 J. Comp. Chem. 3 214
[26] van Schilfgaarde M, Kotani T, Faleev S 2006 Phys. Rev. Lett. 96 226402
[27] Gonze X, Amadon B, Anglade P M, Beuken J M, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Cote M, Deutsch T, Genovese L, Ghosez Ph, Giantomassi M, Goedecker S, Hamann D R, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M J T, Onida G, Pouillon Y, Rangel T, Rignanese G M, Sangalli D, Shaltaf R, Torrent M, Verstraete M J, Zerah G, Zwanziger J W 2009 Comput. Phys. Commun. 180 2582
[28] Gonze X, Rignanese G M, Verstraete M, Beuken J M, Pouillon Y, Caracas R, Jollet F, Torrent M, Zerah G, Mikami M, Ghosez Ph, Veithen M, Raty J Y, Olevano V, Bruneval F, Reining L, Godby R, Onida G, Hamann D R, Allan D C 2005 Zeit. Kristallogr. 220 558
[29] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C 2002 Comput. Mater. Sci. 25 478
[30] Ashcroft N W, Mermin N D 1976 Solid State Physics (Thomson Learning Inc) p81
[31] Choyke W J, Hamilton D R, Patrick L 1964 Phys. Rev. 133 A1163
[32] Patrick L, Hamilton D R, Choyke W J 1966 Phys. Rev. 143 526
计量
- 文章访问数: 10256
- PDF下载量: 29097
- 被引次数: 0