搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滴状冷凝过程液滴自由表面温度场分析

兰忠 朱霞 彭本利 林勐 马学虎

引用本文:
Citation:

滴状冷凝过程液滴自由表面温度场分析

兰忠, 朱霞, 彭本利, 林勐, 马学虎

The analysis of droplet surface temperature field during dropwise condensation process

Lan Zhong, Zhu Xia, Peng Ben-Li, Lin Meng, Ma Xue-Hu
PDF
导出引用
  • 对于滴状冷凝过程及其传热强化机理, 一般通过分析冷凝壁面上液滴分布和运动规律进行研究, 并且将单个液滴视为稳定的个体, 很少涉及液滴内部运动特征. 本文通过红外热像仪观测了纯蒸气滴状冷凝过程中, 液滴运动时自由表面温度场的演化过程. 发现在疏水壁面上, 液滴由于合并或脱落而发生移动过程中, 其自由表面温度先降低, 而后升高并高于移动前温度. 通过分析疏水表面上液滴移动过程的物理模型, 认为液滴移动时表面液膜发生履带式滚动现象, 或者发生液滴内部与自由表面附近的液体间形成对流和掺混现象. 对液滴运动时表面温度演变规律的分析表明: 触发液滴表面发生持续冷凝可能需要克服一个临界过冷度, 当气液间温差超过该临界值时才诱发冷凝; 液滴合并或脱落等整体运动过程, 导致了液滴内部的运动特征, 并促进了较大尺寸液滴表面发生直接冷凝, 这为强化冷凝传热的研究提供新的思路.
    The invistigations on dropwise condensation process and the mechanism of heat transfer enhancement are usually based on the droplet distribution and the movement principle of droplets on condensing surface. In the meanwhile, a single droplet is treated as a stable individual and the movement property inside the droplet is rarely considered. With infrared thermography, the surface temperature distribution of condensate droplet during steam dropwise condensation process is observed. The result shows that the temperature of droplet surface first decreases and then increases and up to a value higher than the initial one as the droplet migrates from one position to another. The droplet will roll and the surface film would be tracked when the droplet moves on the hydrophobic surface. With the convection inside the droplet, condensate near the wall moves to the surface side. The analysis of surface temperature evolution of droplet indicates that the continuous condensation on droplet surface may occur when the surface subcooling exceeds a critical value. The direct condensation on large droplet surface can be promoted by the dynamic process such as droplet coalescence or falling off, which provides a new approach to the condensation heat transfer enhancement.
    • 基金项目: 国家自然科学基金(批准号: 50906006)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.50906006).
    [1]

    Rose J W, Glicksman L R 1973 International Journal of Heat Mass Transfer 6 411

    [2]

    Gose E E, Mucciardi A N, Baer E 1967 International Journal of Heat Mass Transfer 10 15

    [3]

    Tanasawa I, Tachibana F, Ochiai 1978 Sixth International Heat Transfer Conference, Toronto,Ont., Canada, August 7-11 1978 p393

    [4]

    Cao Z J, Guo Y 1999 Acta Phys. Sin. 48 1823 (in Chinese) [曹治觉, 郭愚 1999 物理学报 48 1823]

    [5]

    Cao Z J 2002 Acta Phys. Sin. 51 25 (in Chinese) [曹治觉 2002 物理学报 51 25]

    [6]

    Zhu R C, Yan H, Wang X S 2010 Acta Phys. Sin. 59 7271 (in Chinese) [朱如曾, 闫红, 王小松 2010 物理学报 59 7271]

    [7]

    Fujiwara H, Kondo M 2005 Applied Physics Letters 86 032112

    [8]

    Klassen M, Dimarzo M, Sirkis J 1992 Experimental Thermal and Fluid Science 5 136

    [9]

    Barozzi G S, Corticelli M A, MacIver, T R, Tartarini, P 1999 Heat and Technology 17 13

    [10]

    Tartarini P, Corticelli M A, Tarozzi L 2009 Applied Thermal Engineering 29 1391

    [11]

    Ganzevles F L A , van der Geld C W M 2002 Int. J. Heat Mass Transfer 45 3233

    [12]

    Ganzevles F L A, van der Geld C W M 2004 Experimental Thermal and Fluid Science 28 237

    [13]

    Kim H, Buongiorno J 2011 International Journal of Multiphase Flow 37 166

    [14]

    Lan Z, Ma X H, Wang S F, Wang M Z, Li X N 2010 Chemical Engineering Journal 156 546

    [15]

    Qian B T, Shen Z Q 2006 Journal of Inorganic Materials 21 747

    [16]

    Rose J W 1981 Int. J. Heat Mass Transfer 24 191

    [17]

    Zhou X D 2007 Ph. D. Dissertation (dalian: Dalian University of Technology) (in Chinese) [周兴东 2007 博士学位论文 (大连: 大连理工大学)]

    [18]

    Wu W H, Maa J R 1976 The Chemical Engineering Journal 11 143

  • [1]

    Rose J W, Glicksman L R 1973 International Journal of Heat Mass Transfer 6 411

    [2]

    Gose E E, Mucciardi A N, Baer E 1967 International Journal of Heat Mass Transfer 10 15

    [3]

    Tanasawa I, Tachibana F, Ochiai 1978 Sixth International Heat Transfer Conference, Toronto,Ont., Canada, August 7-11 1978 p393

    [4]

    Cao Z J, Guo Y 1999 Acta Phys. Sin. 48 1823 (in Chinese) [曹治觉, 郭愚 1999 物理学报 48 1823]

    [5]

    Cao Z J 2002 Acta Phys. Sin. 51 25 (in Chinese) [曹治觉 2002 物理学报 51 25]

    [6]

    Zhu R C, Yan H, Wang X S 2010 Acta Phys. Sin. 59 7271 (in Chinese) [朱如曾, 闫红, 王小松 2010 物理学报 59 7271]

    [7]

    Fujiwara H, Kondo M 2005 Applied Physics Letters 86 032112

    [8]

    Klassen M, Dimarzo M, Sirkis J 1992 Experimental Thermal and Fluid Science 5 136

    [9]

    Barozzi G S, Corticelli M A, MacIver, T R, Tartarini, P 1999 Heat and Technology 17 13

    [10]

    Tartarini P, Corticelli M A, Tarozzi L 2009 Applied Thermal Engineering 29 1391

    [11]

    Ganzevles F L A , van der Geld C W M 2002 Int. J. Heat Mass Transfer 45 3233

    [12]

    Ganzevles F L A, van der Geld C W M 2004 Experimental Thermal and Fluid Science 28 237

    [13]

    Kim H, Buongiorno J 2011 International Journal of Multiphase Flow 37 166

    [14]

    Lan Z, Ma X H, Wang S F, Wang M Z, Li X N 2010 Chemical Engineering Journal 156 546

    [15]

    Qian B T, Shen Z Q 2006 Journal of Inorganic Materials 21 747

    [16]

    Rose J W 1981 Int. J. Heat Mass Transfer 24 191

    [17]

    Zhou X D 2007 Ph. D. Dissertation (dalian: Dalian University of Technology) (in Chinese) [周兴东 2007 博士学位论文 (大连: 大连理工大学)]

    [18]

    Wu W H, Maa J R 1976 The Chemical Engineering Journal 11 143

  • [1] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [2] 马晓波, 王飞, 陈德珍. 亚表面异质缺陷对功能梯度材料表面温度场的影响. 物理学报, 2014, 63(19): 194401. doi: 10.7498/aps.63.194401
    [3] Tatartchenko Vitali, 刘一凡, 吴勇, 周健杰, 孙大伟, 袁军, 朱枝勇, Smirnov Pavel, Rusanov Artem, 牛沈军, 李东振, 宗志远, 陈晓飞. 一级相变时的红外特征辐射–熔融结晶和蒸气冷凝或沉淀. 物理学报, 2013, 62(7): 079203. doi: 10.7498/aps.62.079203
    [4] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [5] 高向东, 莫玲, 仲训杲, 游德勇, Katayama Seiji. 大功率光纤激光焊焊缝跟踪偏差红外检测方法. 物理学报, 2011, 60(8): 088105. doi: 10.7498/aps.60.088105
    [6] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析. 物理学报, 2011, 60(12): 120508. doi: 10.7498/aps.60.120508
    [7] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章. 物理学报, 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [8] 兰忠, 王爱丽, 马学虎, 彭本利, 宋天一. 蒸汽冷凝过程的分子团聚模型及其对不凝性气体影响传热性能的解释. 物理学报, 2010, 59(9): 6014-6021. doi: 10.7498/aps.59.6014
    [9] 王友文, 胡勇华, 文双春, 游开明, 傅喜泉. 高斯光束非线性“热像”效应研究. 物理学报, 2007, 56(10): 5855-5861. doi: 10.7498/aps.56.5855
    [10] 刘 霖, 叶玉堂, 吴云峰, 方 亮, 陆佳佳. GaAs表面不同运动状态H2SO4-H2O2-H2O液滴的红外辐射特性. 物理学报, 2007, 56(6): 3172-3177. doi: 10.7498/aps.56.3172
    [11] 范树海, 贺洪波, 邵建达, 范正修, 赵元安. 表面热透镜薄膜吸收测量灵敏度提高方法. 物理学报, 2006, 55(2): 758-763. doi: 10.7498/aps.55.758
    [12] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [13] 曹治觉. 关于“滴状冷凝中液滴内外压强差及临界半径”的评注. 物理学报, 2004, 53(5): 1321-1324. doi: 10.7498/aps.53.1321
    [14] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
    [15] 曹治觉. 冷凝器滴状冷凝的动态描述及接触角的选择. 物理学报, 2002, 51(1): 25-30. doi: 10.7498/aps.51.25
    [16] 闵敬春. 滴状冷凝中液滴的内外压差及临界半径. 物理学报, 2002, 51(12): 2730-2732. doi: 10.7498/aps.51.2730
    [17] 曹治觉, 郭 愚. 冷凝器壁面滴状冷凝的热力学机理及最佳接触角. 物理学报, 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
    [18] 蔡俊道, 吉光达, 吴杭生, 蔡建华, 龚昌德. 超导临界温度理论(Ⅲ). 物理学报, 1979, 28(3): 393-405. doi: 10.7498/aps.28.393
    [19] 龚昌德, 吴杭生, 蔡建华, 蔡俊道, 吉光达. 超导临界温度理论(Ⅱ). 物理学报, 1978, 27(1): 85-93. doi: 10.7498/aps.27.85
    [20] 吴杭生, 蔡建华, 龚昌德, 吉光达, 蔡俊道. 超导临界温度理论(Ⅰ). 物理学报, 1977, 26(6): 509-520. doi: 10.7498/aps.26.509
计量
  • 文章访问数:  6690
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-09
  • 修回日期:  2012-01-05
  • 刊出日期:  2012-08-05

/

返回文章
返回