搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超小自聚焦光纤探头研究用场追迹数值模拟技术

王驰 毕书博 王利 夏学勤 丁卫 于瀛洁

引用本文:
Citation:

超小自聚焦光纤探头研究用场追迹数值模拟技术

王驰, 毕书博, 王利, 夏学勤, 丁卫, 于瀛洁

Field-tracing based numerical simulation technique for the investigation of ultra-small self-focusing optical fiber probe

Wang Chi, Bi Shu-Bo, Wang Li, Xia Xue-Qin, Ding Wei, Yu Ying-Jie
PDF
导出引用
  • 研究场追迹数值模拟技术在超小自聚焦光纤探头设计与分析中的应用方法. 首先, 论述场追迹的概念及其基本原理; 其次, 论述场追迹在VirtualLab软件中的实现方法; 最后, 研究超小自聚焦光纤探头在基于场追迹的物理光学软件VirtualLab中的建模与分析方法, 并进行仿真结果与实验结果的比较分析. 结果显示, 如设无芯光纤的长度为0.36 mm, 自聚焦光纤透镜的长度分别为0.10, 0.11和0.12 mm, 计算所得的工作距离分别为0.75, 0.63和0.51 mm, 光斑尺寸分别为32, 24和19 μm. 理论计算结果与实验结果符合, 表明基于场追迹的数值模拟技术是研究超小自聚焦光纤探头设计与分析方法的一个有效手段.
    Field-tracing based numerical simulation technique is investigated to design and analyze ultra-small self-focusing optical fiber probe. Firstly, the concept and principle of the field-tracing are described. Secondly, the method is discussed to implement the field-tracing technique in the physical optical software of VirtualLab. Finally, an ultra-small self-focusing optical fiber probe is simulated in the field-tracing based optical software of VirtualLab. In this paper, we find that under the conditions of a fiber spacer length of 0.36 mm and the self-focusing fiber lens lengths of 0.1 mm, 0.11 mm and 0.12 mm, the working distances of the probe are 0.75 mm, 0.63 mm and 0.51 mm, and the focus spot sizes are 32 μm, 24 μm and 19 μm respectively. The simulation results are in good agreement with the experimental data, showing that the field-tracing based numerical simulation technique is an effective tool for investigating ultra-small self-focusing optical fiber probe.
    • 基金项目: 国家自然科学基金(批准号: 41104065)、精密测试技术及仪器国家重点实验室开放基金、上海市"晨光计划" (批准号: 12CG47)和上海市教育委员会科研创新项目(批准号: 13YZ022)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41104065), the State Key Laboratory of Precision Measuring Technology and Instruments, the Dawn Planning Foundation of Shanghai Municipal Education Commission (Grant No. 12CG047), and the Scientific Research Innovation Project of Shanghai Municipal Education Commission (Grant No. 13YZ022).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 Science 254 1178

    [2]

    Guo S G, Yu L F, Sepehr A, Perez J, Su J P, Ridgway J M, Vokes D, Wong B J F, Chen Z P 2009 J. Biom. Opt. 14 014017

    [3]

    Xie T Q, Guo S G, Chen Z P, Mukai D, Brenner M 2006 Opt. Expr. 14 3238

    [4]

    Xie T Q, Liu G J, Kreuter K, Mahon S, Colt H, Mukai D, Peavy G M, Chen Z P, Brenner M 2009 J. Biom. Opt. 14 064045

    [5]

    Singh J, Teo J H S, Xu Y, Premachandran C S, Chen N, Kotlanka R, Olivo M, Sheppard C J R 2008 J. Micromech. Microeng. 18 025001

    [6]

    Aljasem K, Werber A, Seifert A, Zappe H 2008 J. Opt. A: Pure Appl. Opt. 10 044012

    [7]

    Meemon P, Lee K S, Murali S, Rolland J 2008 Appl. Opt. 47 2452

    [8]

    Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897

    [9]

    Jung W, Benalcazar W, Ahmad A, Sharma U Tu H H, Boppart S A 2010 J. Biom. Opt. 15 066027

    [10]

    Hudelist F, Nowosielski J M, Buczynski R, Waddie A J, Taghizadeh M R 2010 Opt. Lett. 35 130

    [11]

    Hudelist F, Buczynski R, Waddie A J, Taghizadeh M R 2009 Opt. Expr. 17 3255

    [12]

    Swanson E, Petersen C L, McNamara E, Petersen C L, McNamara E, Lamport R B, Kelly D L 2002 U.S. Patent 6 445 939 [1999-08-09]

    [13]

    Reed W A, Yan M F, Schnitzer M J 2002 Opt. Lett. 27 1794

    [14]

    Jafri M S, Farhang S, Tang R S, Desai N, Fishman P S, Rohwer R G, Tang C M, Schmitt J M 2005 J. Biom. Opt. 10 051603

    [15]

    Mao Y X, Chang S D, Sherif S, Flueraru C 2007 Appl. Opt. 46 5887

    [16]

    Mao Y X, Chang S D, Flueraru C 2010 J. Biomedical Science and Engineering, 3 7

    [17]

    Wang C, Mao Y X, Fang C, Tang Z, Yu Y J, Qi B 2011 Opt. Eng. 50 094202

    [18]

    Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Chin. Phys. B 20 114218

    [19]

    Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Opt. Prec. Eng. 19 2300

    [20]

    Wyrowski F, Kuhn M 2011 J. Modern Opt. 58 449

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 Science 254 1178

    [2]

    Guo S G, Yu L F, Sepehr A, Perez J, Su J P, Ridgway J M, Vokes D, Wong B J F, Chen Z P 2009 J. Biom. Opt. 14 014017

    [3]

    Xie T Q, Guo S G, Chen Z P, Mukai D, Brenner M 2006 Opt. Expr. 14 3238

    [4]

    Xie T Q, Liu G J, Kreuter K, Mahon S, Colt H, Mukai D, Peavy G M, Chen Z P, Brenner M 2009 J. Biom. Opt. 14 064045

    [5]

    Singh J, Teo J H S, Xu Y, Premachandran C S, Chen N, Kotlanka R, Olivo M, Sheppard C J R 2008 J. Micromech. Microeng. 18 025001

    [6]

    Aljasem K, Werber A, Seifert A, Zappe H 2008 J. Opt. A: Pure Appl. Opt. 10 044012

    [7]

    Meemon P, Lee K S, Murali S, Rolland J 2008 Appl. Opt. 47 2452

    [8]

    Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897

    [9]

    Jung W, Benalcazar W, Ahmad A, Sharma U Tu H H, Boppart S A 2010 J. Biom. Opt. 15 066027

    [10]

    Hudelist F, Nowosielski J M, Buczynski R, Waddie A J, Taghizadeh M R 2010 Opt. Lett. 35 130

    [11]

    Hudelist F, Buczynski R, Waddie A J, Taghizadeh M R 2009 Opt. Expr. 17 3255

    [12]

    Swanson E, Petersen C L, McNamara E, Petersen C L, McNamara E, Lamport R B, Kelly D L 2002 U.S. Patent 6 445 939 [1999-08-09]

    [13]

    Reed W A, Yan M F, Schnitzer M J 2002 Opt. Lett. 27 1794

    [14]

    Jafri M S, Farhang S, Tang R S, Desai N, Fishman P S, Rohwer R G, Tang C M, Schmitt J M 2005 J. Biom. Opt. 10 051603

    [15]

    Mao Y X, Chang S D, Sherif S, Flueraru C 2007 Appl. Opt. 46 5887

    [16]

    Mao Y X, Chang S D, Flueraru C 2010 J. Biomedical Science and Engineering, 3 7

    [17]

    Wang C, Mao Y X, Fang C, Tang Z, Yu Y J, Qi B 2011 Opt. Eng. 50 094202

    [18]

    Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Chin. Phys. B 20 114218

    [19]

    Wang C, Mao Y X, Tang Z, Fang C, Yu Y J, Qi B 2011 Opt. Prec. Eng. 19 2300

    [20]

    Wyrowski F, Kuhn M 2011 J. Modern Opt. 58 449

  • [1] 吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头. 物理学报, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [2] 吴慎将, 刘荣明, 王佳, 李党娟, 程军霞. Mojette变换层析技术中的投影角度布局方法. 物理学报, 2021, 70(3): 034202. doi: 10.7498/aps.70.20200927
    [3] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析. 物理学报, 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [4] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [5] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法. 物理学报, 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [6] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [7] 马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅. 基于光学相干层析成像的早期鸡胚心脏径向应变测量. 物理学报, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [8] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法. 物理学报, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [9] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [10] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [11] 鲍文, 丁志华, 王川, 梅胜涛. 基于相位敏感谱域光学相干层析术的潜指纹获取方法. 物理学报, 2013, 62(11): 114202. doi: 10.7498/aps.62.114202
    [12] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [13] 陈明惠, 丁志华, 王成, 宋成利. 基于法布里-珀罗调谐滤波器的傅里叶域锁模扫频激光光源. 物理学报, 2013, 62(6): 068703. doi: 10.7498/aps.62.068703
    [14] 曾志平, 谢文明, 张建英, 李莉, 陈树强, 李志芳, 李晖. 基于聚焦光声层析技术的甲状腺离体组织成像. 物理学报, 2012, 61(9): 097801. doi: 10.7498/aps.61.097801
    [15] 王凯, 曾焱, 丁志华, 孟婕, 史国华, 张雨东. 谱域光学相干层析系统中基于解卷积方法的像质优化. 物理学报, 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [16] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [17] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [18] 梁艳梅, 周大川, 孟凡勇, 王明伟. 一种新型的专用于光学相干层析系统的宽带光纤光源. 物理学报, 2007, 56(6): 3246-3250. doi: 10.7498/aps.56.3246
    [19] 贾亚青, 梁艳梅, 朱晓农. 光学相干层析信号的模拟分析与计算. 物理学报, 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [20] 骆建, 陶琨. X射线衍射多晶谱计算机深度层析技术探索. 物理学报, 1995, 44(11): 1793-1797. doi: 10.7498/aps.44.1793
计量
  • 文章访问数:  5446
  • PDF下载量:  663
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-21
  • 修回日期:  2012-07-13
  • 刊出日期:  2013-01-05

/

返回文章
返回