-
采用指数掺杂技术, 通过金属有机化学气相沉积法外延生长了反射式GaAlAs和GaAs光电阴极, GaAlAs发射层的Al组分设计为0.63. 在超高真空系统中分别对两种阴极进行激活实验, 得到激活后的光谱响应曲线. 利用指数掺杂反射式光电阴极量子效率公式对实验曲线进行拟合并分析了电子漂移扩散长度、后界面复合速率、表面电子逸出几率等性能参数对光电发射性能的影响. 结果表明, 与GaAs光电阴极相比, GaAlAs光电阴极的Al组分虽然在一定程度上不利于光电发射, 但是解决了GaAs光电阴极由于响应波段宽而不能很好地用于窄波段可见光探测领域的问题, 制备出只对蓝绿光响应的反射式GaAlAs光电阴极.A reflection-mode GaAlAs photocathode and a reflection-mode GaAs photocathode using exponential-doping technique are prepared by metal organic chemical vapor deposition, and the Al content of GaAlAs emission layer is 0.63. The two photocathodes are activated in an ultra-high vacuum system, and the spectral response curves are measured after activation. The quantum efficiency formula for exponential-doping reflection-mode photocathode is used to fit the experimental curves of the two photocathodes respectively, and the effects of some performance parameters on photoemission are analyzed, such as electron diffusion and drift length, back-interface recombination velocity, surface electron escape probability, etc. The results show that the Al content of the GaAlAs photocathode plays a bad role in the photoemission compared with that the GaAs photocathode, but it solves the problem that the GaAs photocathode cannot be well used in the area of detecting the narrow wavelength light due to the broad spectral response. The reflection-mode GaAlAs photocathode prepared is responsive to the blue and green light.
-
Keywords:
- exponential-doping /
- reflection-mode /
- photocathode /
- quantum efficiency
[1] Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107
[2] Zou J J, Chang B K, Chen H L, Liu L 2007 J. Appl. Phys. 101 033126
[3] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Guo X Y, Du X Q 2011 Acta Phys. Sin. 60 047901 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴 2011 物理学报 60 047901]
[4] Rao T, Burrill A, Chang X Y, Smedley J, Nishitani T, Garcia C H, Poelker M, Seddon E, Hannon F E, Sinclair C K, Lewellen J, Feldmang D 2006 Nucl. Instr. Meth. A 557 124
[5] Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02
[6] Martinelli R U, Ettenberg M 1974 J. Appl. Phys. 45 3896
[7] Liu Y Z, Moll J L, Spicer W E 1969 Appl. Phys. Lett. 14 275
[8] Du X Q, Chang B K 2005 Appl. Surf. Sci. 251 267
[9] Stocker B J 1975 Surf. Sci. 47 501
[10] Fisher D G 1974 IEEE Trans. Electron Devices 21 541
[11] Zou J J, Feng L, Lin G Y, Rao Y T, Yang Z, Qian Y S, Chang B K 2007 Proc. SPIE 6782 67823D
[12] Qian Y S, Zong Z Y, Chang B K 2001 Proc. SPIE 4580 486
[13] Fisher D G, Enstrom R E, Escher J S, Williams B F 1972 J. Appl. Phys. 43 3815
[14] Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]
[15] Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754
[16] Niu J, Yang Z, Chang B K, Qiao J L, Zhang Y J 2008 Acta Phys. Sin. 58 5002 (in Chinese) [牛军, 杨智, 常本康, 乔建良, 张益军 2008 物理学报 58 5002]
[17] Narayanan A A, Fisher D G, Erickson L P, O'Ctock G D 1984 J. Appl. Phys. 56 1886
[18] Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301 (in Chinese) [张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301]
-
[1] Liu Z, Sun Y, Peterson S, Pianetta P 2008 Appl. Phys. Lett. 92 241107
[2] Zou J J, Chang B K, Chen H L, Liu L 2007 J. Appl. Phys. 101 033126
[3] Wang X H, Chang B K, Qian Y S, Gao P, Zhang Y J, Guo X Y, Du X Q 2011 Acta Phys. Sin. 60 047901 (in Chinese) [王晓晖, 常本康, 钱芸生, 高频, 张益军, 郭向阳, 杜晓晴 2011 物理学报 60 047901]
[4] Rao T, Burrill A, Chang X Y, Smedley J, Nishitani T, Garcia C H, Poelker M, Seddon E, Hannon F E, Sinclair C K, Lewellen J, Feldmang D 2006 Nucl. Instr. Meth. A 557 124
[5] Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K, Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02
[6] Martinelli R U, Ettenberg M 1974 J. Appl. Phys. 45 3896
[7] Liu Y Z, Moll J L, Spicer W E 1969 Appl. Phys. Lett. 14 275
[8] Du X Q, Chang B K 2005 Appl. Surf. Sci. 251 267
[9] Stocker B J 1975 Surf. Sci. 47 501
[10] Fisher D G 1974 IEEE Trans. Electron Devices 21 541
[11] Zou J J, Feng L, Lin G Y, Rao Y T, Yang Z, Qian Y S, Chang B K 2007 Proc. SPIE 6782 67823D
[12] Qian Y S, Zong Z Y, Chang B K 2001 Proc. SPIE 4580 486
[13] Fisher D G, Enstrom R E, Escher J S, Williams B F 1972 J. Appl. Phys. 43 3815
[14] Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992 (in Chinese) [邹继军, 常本康, 杨智 2007 物理学报 56 2992]
[15] Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754
[16] Niu J, Yang Z, Chang B K, Qiao J L, Zhang Y J 2008 Acta Phys. Sin. 58 5002 (in Chinese) [牛军, 杨智, 常本康, 乔建良, 张益军 2008 物理学报 58 5002]
[17] Narayanan A A, Fisher D G, Erickson L P, O'Ctock G D 1984 J. Appl. Phys. 56 1886
[18] Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K 2011 Acta Phys. Sin. 60 067301 (in Chinese) [张益军, 牛军, 赵静, 邹继军, 常本康 2011 物理学报 60 067301]
计量
- 文章访问数: 6765
- PDF下载量: 527
- 被引次数: 0