-
基于密度泛函理论的第一性原理方法研究了BiOCl{001}的三种不同终端面({001}-1Cl, {001}-BiO 和{001}-2Cl)的表面弛豫、能带结构、电子态密度和表面能. 计算结果表明: {001}-1Cl, {001}-BiO和{001}-2Cl表面均发生明显弛豫, 而在双Cl原子层处的层间距变化较大, 但未出现振荡弛豫现象, 其中{001}-1Cl表面弛豫较小. 与体相BiOCl电子结构相比, BiOCl{001}面具有较窄的带隙宽度, 并呈现较强局域性:对于{001}-BiO表面, 其导带与价带均往低能方向发生较大移动, 并且在导带底部出现表面态; 而{001}-2Cl表面的表面态主要出现在价带顶; {001}-1Cl表面的带隙中则无表面态产生; 表面态的出现导致{001}-BiO面和{001}-2Cl面带隙明显减小. BiOCl{001}三种终端表面的表面能分析结果表明, {001}-1Cl表面的表面能最小(0.09206 J·m-2), 结构最稳定, 而{001}-BiO表面和{001}-2Cl表面的表面能分别为2.392和2.461 J·m-2. 理论预测{001}-BiO表面和{001}-2Cl表面具有较高的活性, 但在BiOCl晶体生长过程中不易暴露. 本文计算结果为实验获得BiOCl高活性面{001}给予了基础理论解释, 进一步为BiOCl新型光催化材料的应用研究提供理论指导.
-
关键词:
- BiOCl{001}表面 /
- 表面弛豫 /
- 表面能 /
- 第一性原理
The surface relaxations, band structures, densities of states and surface energies of BiOCl{001} surfaces containing {001}-1Cl, {001}-BiO and {001}-2Cl are studied using first-principles based on density functional theory. The calculated results indicate that there exist obvious relaxations for the three types of {001} surfaces, especially for their double chlorine layers. The relaxation result of {001}-1Cl surface is the minimum one in the BiOCl{001} surfaces. Compared with the electronic structure of bulk BiOCl, BiOCl{001} surfaces exhibit the smaller band gap and stronger localized energy levels. Besides, both conduction and valence band of {001}-BiO shift towards the lower energy and there exist surface states at the bottom of conduction band. For {001}-2Cl, surface states are located at the top of valence band. The occurrences of these surface states can lead to the obvious reductions of band gaps for {001}-BiO and {001}-2Cl. Furthermore, the surface energy of BiOCl{001} is calculated and investigated. The analysis results show that surface energies of {001}-1Cl, {001}-BiO and {001}-2Cl are 0.09206 J·m-2, 2.392 J·m-2 and 2.461 J·m-2, respectively. Thus the {001}-1Cl possesses the minimum surface energy and the highest stability, while {001}-BiO and {001}-2Cl exhibit the higher reaction activities and are difficult to be exposed in the growth process of BiOCl crystal. Our obtained results provide the theoretical guidance for the further understanding of the facet-dependent photoreactivity of BiOCl, the fine manipulation of their photoreactivity, and the progress of actual application for BiOCl photocatalytic material.-
Keywords:
- BiOCl{001} surface /
- surface relaxation /
- surface energy /
- first-principles
[1] Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1
[2] Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731
[3] Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527
[4] Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503
[5] Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1
[6] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344
[7] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125
[8] Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115
[9] Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82
[10] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572
[11] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294
[12] Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553
[13] Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525
[14] Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133
[15] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490
[16] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078
[17] Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]
[18] Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951
[19] Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152
[20] Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473
[21] Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[25] Pulay P 1969 Mol. Phys. 17 197
[26] Shanno D F, Phua K H 1978 Math. Program. 14 149
[27] Bannister F A 1934 Nature 134 856
[28] Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101
[29] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180
[30] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416
[31] Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521
[32] Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]
[33] Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[34] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[35] Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]
[36] Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]
[37] Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]
[38] Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49
[39] Cui J, Liu W 2010 Physica B 405 4687
[40] Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602
-
[1] Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1
[2] Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731
[3] Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527
[4] Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503
[5] Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1
[6] Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344
[7] Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125
[8] Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115
[9] Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82
[10] Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572
[11] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294
[12] Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553
[13] Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525
[14] Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133
[15] Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490
[16] Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078
[17] Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]
[18] Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951
[19] Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152
[20] Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473
[21] Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224
[22] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[23] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[25] Pulay P 1969 Mol. Phys. 17 197
[26] Shanno D F, Phua K H 1978 Math. Program. 14 149
[27] Bannister F A 1934 Nature 134 856
[28] Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101
[29] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180
[30] Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416
[31] Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521
[32] Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]
[33] Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[34] Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]
[35] Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]
[36] Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]
[37] Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]
[38] Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49
[39] Cui J, Liu W 2010 Physica B 405 4687
[40] Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602
计量
- 文章访问数: 7829
- PDF下载量: 976
- 被引次数: 0