-
采用聚碳酸酯模板和电化学沉积法制备基于金纳米棒的Raman场增强衬底, 制备的金纳米棒直径大约36 nm, 长约1 μm, 测试结果显示其共振吸收峰的位置约为540 nm. 比较了谐振和非谐振条件下的场增强情况, 并确定了场增益系数, 结果显示谐振激光激发下的增益比非谐振情况下提高了7.36倍. 本研究相对于前人的工作取得了如下进展: 一是讨论了谐振模式与非谐振模式下的金纳米棒的场增益系数, 利用谐振波长的激光激发金纳米棒, 进一步提高了场增益; 二是消除了聚碳酸酯模板分子的荧光背底, 使其在表面增强 Raman 散射方面的应用进一步变得可行.
-
关键词:
- 金纳米棒 /
- 表面增强Raman散射 /
- 聚碳酸酯模板
Using a polycarbonate membrane (PCM) as a template, and combining with the electrochemical deposition method, we prepare gold nanorods each with about 36 nm in diameter and 1 μrm in length. We measure transmission spectra, and find that the resonant absorption peak is at around 540 nm. Subsequently, the enhancement effects of the nanorods are investigated with 514 nm and 633 nm laser excitations. Comparing the spectra under resonant condition with those under non-resonant condition, we conclude that the field enhancement effect under the resonant excitation is more prominent than under the non-resonant excitation. The enhancement factor under the resonant excitation is increased to 7 times of the factor under the non-resonant excitation. Comparing with similar researches, we achieve the following two improvements: 1) with a resonant excitation, we significantly increase the enhancement factor of gold nanorods; 2) we eliminate the fluorescence of PCM molecules, thus make the template method more feasible for transparent surface-enhanced Raman scattering substrate applications.[1] Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753
[2] Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404
[3] Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428
[4] Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083
[5] Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163
[6] Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1
[7] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215
[8] Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466
[9] Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794
[10] Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013
[11] Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601
[12] Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807
[13] Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015
[14] Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467
[15] Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082
[16] Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047
[17] Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]
[18] Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[19] Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207
[20] Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184
[21] Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488
[22] Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791
[23] Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054
[24] Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736
[25] Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115
[26] Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233
[27] Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806
[28] Apel P 2001 Radiat. Meas. 34 559
[29] Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497
[30] Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637
[31] Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169
[32] Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0
[33] Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702
[34] Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513
-
[1] Wu G Z, Ma S G 1998 Chin. Phys. Lett. 15 753
[2] Yin Y, Vamivakas A N, Walsh A G, Cronin S B, Ünl M S, Goldberg B B, Swan A K 2007 Phys. Rev. Lett. 98 037404
[3] Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Prober D E, Goldberg B B 2011 Phys. Rev. B 84 075428
[4] Yin Y, Walsh A G, Vamivakas A N, Cronin S B, Stolyarov A, Tinkham M, Bacsa W, Ünl M S, Goldberg B B, Swan A K 2006 IEEE J. Sel. Top. Quant. Electron. 12 1083
[5] Fleischmann M, Hendra P J, McQuillan A J 1974 Chem. Phys. Lett. 26 163
[6] Jeanmaire D L, van Duyne R P 1977 J. Electroanal. Chem. 84 1
[7] Albrecht M G, Creighton J A 1977 J. Am. Chem. Soc. 99 5215
[8] Blackie E J, Le Ru E C, Etchegoin P G 2009 J. Am. Chem. Soc. 131 14466
[9] Le Ru E C, Blackie E, Meyer M, Etchegoin P G 2007 J. Phys. Chem. C 111 13794
[10] Kambhampati P, Child C M, Foster M C, Campion A 1998 J. Chem. Phys. 108 5013
[11] Stiles P L, Dieringer J A, Shah N C, van Duyne R R 2008 Annu. Rev. Anal. Chem. 1 601
[12] Campion A, Ivanecky III J E, Child C M, Foster M 1995 J. Am. Chem. Soc. 117 11807
[13] Brolo A G, Arctander E, Gordon R, Leathem B, Kavanagh K L 2004 Nano Lett. 4 2015
[14] Le Ru E C, Etchegoin P G, Grand J, Fe'lidj N, Aubard J, Le'vi G, Hohenau A, Krenn J R 2008 Curr. Appl. Phys. 8 467
[15] Saute B, Premasiri R, Ziegler L, Narayanan R 2012 Analyst 137 5082
[16] Zhang Q, Moran C H, Xia X H, Rycenga M, Li N X, Xia Y N 2012 Langmuir 28 9047
[17] Zhang K, Liu J B, Hu X N, Xiang Y J, Feng L L, He W W, Hou S, Guo Y T, Ji Y L, Zhou W Y, Xie S S, Wu X C 2011 Physics 40 9 (in Chinese) [张 珂, 刘建波, 胡晓娜, 向彦娟, 冯莉莉, 何伟伟, 侯帅, 郭玉婷, 纪英露, 周维亚, 解思深, 吴晓春 2011物理 40 9]
[18] Willets K A, Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[19] Kuncicky D M, Prevo B G, Velev O D 2006 J. Mater. Chem. 16 1207
[20] Huang Z L, Meng G W, Huang Q, Chen B, Zhu C H, Zhang Z 2012 J. Raman Spectrosc. DOI 10.1002/jrs.4184
[21] Alexander K D, Skinner K, Zhang S P, Wei H, Lopez R 2010 Nano Lett. 10 4488
[22] Fukami K, Chourou M L, Miyagawa R, Noval Á M, Sakka T, Miguel M S, Raúl J M P, Ogata Y H 2011 Materials 4 791
[23] Pereira F C, Bergamo E P, Zanoni M V B, Moretto L M, Ugo P 2006 Quim. Nova. 29 1054
[24] Azariana A, Zada A I, Dolati A, Mahdavia S M 2009 Thin Solid Films 517 1736
[25] Dangwal A, Pandey C S, Mller G, Karim S, Cornelius T W, Trautmann C 2008 Appl. Phys. Lett. 92 063115
[26] Batista E A, Santos D P D, Andrade G F S, Sant'Ana A C, Brolo A G, Temperini M L A 2009 J. Nanosci. Nanotechnol. 9 3233
[27] Gamby J, Rudolf A, Abid M, Girault H H, Tribollet C D B 2009 Lab. Chip. 9 1806
[28] Apel P 2001 Radiat. Meas. 34 559
[29] Schönenberger C, van der Zande B M I, Fokkink L G J, Henny M, Schmid C, Krger M, Bachtold A, Huber R, Birk H, Staufer U 1997 J. Phys. Chem. B 101 5497
[30] Chlebny I, Doudin B, Ansermet J Ph 1993 Nanostruct. Mater. 2 637
[31] Zhao Y, Jiang Y J, Fang Y 2006 Chem. Phys. 323 169
[32] Khurana P, Thatai S, Wang P J, Lihitkar P, Zhang L S, Fang Y, Kulkarni S K 2012 Plasmonics DOI 10.1007/s11468-012-9374-0
[33] Wang P J, Fang Y 2008 J. Chem. Phys. 129 134702
[34] Tiwari N, Liu M Y, Kulkarni S K, Fang Y 2011 J. Nanophoton. 5 053513
计量
- 文章访问数: 7060
- PDF下载量: 1011
- 被引次数: 0