搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Bell态的三方量子密钥协商

尹逊汝 马文平 申冬苏 王丽丽

引用本文:
Citation:

基于Bell态的三方量子密钥协商

尹逊汝, 马文平, 申冬苏, 王丽丽

Three-party quantum key agreement with Bell states

Yin Xun-Ru, Ma Wen-Ping, Shen Dong-Su, Wang Li-Li
PDF
导出引用
  • 提出了基于两粒子纠缠态的一个三方量子密钥协商协议. 方案中的三个参与者是完全对等的, 且对建立的共享密钥具有相同的贡献. 除此之外, 三方中的任何一方或两方都不能事先单独决定共享密钥. 安全分析表明本协议既能抵抗外部窃听者的攻击, 又能抵抗内部参与者攻击.
    A three-party quantum key agreement protocol based on EPR pairs is proposed, in which the three participants have equal status in the protocol and each participant is capable of contributing to the shared secret key in the same degree. In addition, any one or two parties cannot predetermine the value of shared key alone. The security analysis shows that our protocol can resist the outside attack and the dishonest participants attack.
    • 基金项目: 国家自然科学基金(批准号: 61072140);高等学校创新引智计划(批准号: B08038);高等学校博士学科点专项科研基金(批准号: 20100203110003)和山东省高等学校科技计划项目(批准号: J13LN60)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072140), the 111 Project (Grant No. B08038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100203110003), the Project of Shandong Province Higher Educational Science and Technology Program, China (Grant No. J13LN60).
    [1]

    Mitchell C J, Ward M, Wilson P 1998 Electron. Lett. 34 980

    [2]

    Ateniese G, Steiner M, Tsudik G 2000 IEEE J. Sel. Areas Commun. 18 628

    [3]

    Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, Los Alamitos p124

    [4]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p175

    [5]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2006 Phys. Lett. A 355 172

    [8]

    Zhang Z J, Man Z X 2005 Chin. Phys. Lett. 22 1588

    [9]

    Zeng G H, Keitel C 2002 Phys. Rev. A 65 042312

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Zeng G H, Lee M, Guo Y, He G Q 2007 Int. J. Quantum Inf. 5 553

    [12]

    Zhu C H, Pei C X, Quan D X, Gao J L, Chen N, Yi Y H 2010 Chin. Phys. Lett. 27 090301

    [13]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 10302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 10302]

    [14]

    Zhu J, He G Q, Zeng G H 2007 Chin. Phys. 16 1364

    [15]

    Yang Y G, Wen Q Y, Zhu F C 2006 Acta Phys. Sin. 55 3255 (in Chinese) [杨宇光, 温巧燕, 朱甫臣 2006 物理学报 55 3255]

    [16]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G 51 559

    [17]

    Yin X R, Ma W P, Liu W Y 2012 Int. J. Theor. Phys. 51 455

    [18]

    Nguyen B A 2004 Phys. Lett. A 328 6

    [19]

    Man Z X, Xia Y J, Zhang Z J 2006 Int. J. Quantum Inf. 4 739

    [20]

    Guo Y, Chen Z G, Zeng G H 2007 Chin. Phys. 16 2549

    [21]

    Li J, Jin H F, Jing Bo 2011 Sci. China Ser. G 54 1612.

    [22]

    Liu W, Wang Y B 2011 Acta Phys. Sin. 60 30305 (in Chinese) [刘文, 王永滨 2011 物理学报 60 30305]

    [23]

    Liu B, Gao F, Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383

    [24]

    Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149

    [25]

    Tsai C W, Hwang T 2009 Technical Report, C-S-I-E, NCKU, Taiwan, R.O.C.

    [26]

    Chong S K, Hwang T 2010 Opt. Commun. 283 1192

    [27]

    Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793

    [28]

    Hsueh C C, Chen C Y 2004 Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei p236

    [29]

    Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921

    [30]

    Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797

    [31]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [32]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [33]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2007 Quantum Inf. Comput. 7 329

    [34]

    Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324

    [35]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [36]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Phys. Rev. Lett. 101 208901

    [37]

    Song T T, Zhang J, Gao F, Wen Q Y, Zhu F C 2009 Chin. Phys. B 18 1333

    [38]

    Guo F Z, Qin S J, Gao F, Liu S, Wen Q Y, Zhu F C 2010 Eur. Phys. J. D 56 445

    [39]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2010 Opt. Commun. 283 192

  • [1]

    Mitchell C J, Ward M, Wilson P 1998 Electron. Lett. 34 980

    [2]

    Ateniese G, Steiner M, Tsudik G 2000 IEEE J. Sel. Areas Commun. 18 628

    [3]

    Shor P W 1994 Proceedings of 35th Annual Symposium on Foundations of Computer Science, Los Alamitos p124

    [4]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p175

    [5]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557

    [6]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302

    [7]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2006 Phys. Lett. A 355 172

    [8]

    Zhang Z J, Man Z X 2005 Chin. Phys. Lett. 22 1588

    [9]

    Zeng G H, Keitel C 2002 Phys. Rev. A 65 042312

    [10]

    Deng F G, Long G L, Liu X S 2003 Phys. Rev. A 68 042317

    [11]

    Zeng G H, Lee M, Guo Y, He G Q 2007 Int. J. Quantum Inf. 5 553

    [12]

    Zhu C H, Pei C X, Quan D X, Gao J L, Chen N, Yi Y H 2010 Chin. Phys. Lett. 27 090301

    [13]

    Ding D, Yan F L 2013 Acta Phys. Sin. 62 10302 (in Chinese) [丁东, 闫凤利 2013 物理学报 62 10302]

    [14]

    Zhu J, He G Q, Zeng G H 2007 Chin. Phys. 16 1364

    [15]

    Yang Y G, Wen Q Y, Zhu F C 2006 Acta Phys. Sin. 55 3255 (in Chinese) [杨宇光, 温巧燕, 朱甫臣 2006 物理学报 55 3255]

    [16]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Sci. China Ser. G 51 559

    [17]

    Yin X R, Ma W P, Liu W Y 2012 Int. J. Theor. Phys. 51 455

    [18]

    Nguyen B A 2004 Phys. Lett. A 328 6

    [19]

    Man Z X, Xia Y J, Zhang Z J 2006 Int. J. Quantum Inf. 4 739

    [20]

    Guo Y, Chen Z G, Zeng G H 2007 Chin. Phys. 16 2549

    [21]

    Li J, Jin H F, Jing Bo 2011 Sci. China Ser. G 54 1612.

    [22]

    Liu W, Wang Y B 2011 Acta Phys. Sin. 60 30305 (in Chinese) [刘文, 王永滨 2011 物理学报 60 30305]

    [23]

    Liu B, Gao F, Wen Q Y 2011 IEEE J. Quant. Electron. 47 1383

    [24]

    Zhou N, Zeng G, Xiong J 2004 Electron. Lett. 40 1149

    [25]

    Tsai C W, Hwang T 2009 Technical Report, C-S-I-E, NCKU, Taiwan, R.O.C.

    [26]

    Chong S K, Hwang T 2010 Opt. Commun. 283 1192

    [27]

    Chong S K, Tsai C W, Hwang T 2011 Int. J. Theor. Phys. 50 1793

    [28]

    Hsueh C C, Chen C Y 2004 Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei p236

    [29]

    Shi R H, Zhong H 2013 Quantum Inf. Process. 12 921

    [30]

    Liu B, Gao F, Huang W, Wen Q Y 2013 Quantum Inf. Process. 12 1797

    [31]

    Cai Q Y 2006 Phys. Lett. A 351 23

    [32]

    Li X H, Deng F G, Zhou H Y 2006 Phys. Rev. A 74 054302

    [33]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2007 Quantum Inf. Comput. 7 329

    [34]

    Qin S J, Gao F, Wen Q Y, Zhu F C 2007 Phys. Rev. A 76 062324

    [35]

    Gao F, Wen Q Y, Zhu F C 2007 Phys. Lett. A 360 748

    [36]

    Gao F, Guo F Z, Wen Q Y, Zhu F C 2008 Phys. Rev. Lett. 101 208901

    [37]

    Song T T, Zhang J, Gao F, Wen Q Y, Zhu F C 2009 Chin. Phys. B 18 1333

    [38]

    Guo F Z, Qin S J, Gao F, Liu S, Wen Q Y, Zhu F C 2010 Eur. Phys. J. D 56 445

    [39]

    Gao F, Qin S J, Wen Q Y, Zhu F C 2010 Opt. Commun. 283 192

  • [1] 张云杰, 王旭阳, 张瑜, 王宁, 贾雁翔, 史玉琪, 卢振国, 邹俊, 李永民. 基于硬件同步的四态离散调制连续变量量子密钥分发. 物理学报, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [2] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析. 物理学报, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [3] 周贤韬, 江英华, 郭晓军, 彭展. 带双向身份认证的基于单光子和Bell态混合的量子安全直接通信方案. 物理学报, 2023, 72(13): 130302. doi: 10.7498/aps.72.20221972
    [4] 唐杰, 石磊, 魏家华, 于惠存, 薛阳, 武天雄. 基于d维GHZ态的多方量子密钥协商. 物理学报, 2020, 69(20): 200301. doi: 10.7498/aps.69.20200799
    [5] 荣民希, 辛向军, 李发根. 具有强安全性的指定验证者量子签名方案. 物理学报, 2020, 69(19): 190302. doi: 10.7498/aps.69.20200244
    [6] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议. 物理学报, 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [7] 刘志昊, 陈汉武. 基于Bell态粒子和单光子混合的量子安全直接通信方案的信息泄露问题. 物理学报, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [8] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发. 物理学报, 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [9] 曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业. 基于Bell态粒子和单光子混合的量子安全直接通信方案. 物理学报, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [10] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [11] 王涵, 闫连山, 潘炜, 罗斌, 郭振, 徐明峰. 基于两种光源的诱发态量子密钥分配性能分析. 物理学报, 2011, 60(3): 030304. doi: 10.7498/aps.60.030304
    [12] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [13] 焦荣珍, 张弨, 马海强. 基于实用光源的诱惑态量子密钥分配研究. 物理学报, 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [14] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [15] 焦荣珍, 张文翰. 基于伪态协议的量子密钥分配系统研究. 物理学报, 2009, 58(4): 2189-2192. doi: 10.7498/aps.58.2189
    [16] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案. 物理学报, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [17] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案. 物理学报, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [18] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案. 物理学报, 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
    [19] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [20] 曾贵华, 诸鸿文. 基于非正交态的量子密钥验证方案. 物理学报, 2002, 51(4): 727-730. doi: 10.7498/aps.51.727
计量
  • 文章访问数:  4988
  • PDF下载量:  443
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-05-26
  • 刊出日期:  2013-09-05

/

返回文章
返回