搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻抗匹配条件下磁控管的注入锁频

岳松 张兆传 高冬平

引用本文:
Citation:

阻抗匹配条件下磁控管的注入锁频

岳松, 张兆传, 高冬平

Injection-locking of magnetrons with matched impedance

Yue Song, Zhang Zhao-Chuan, Gao Dong-Ping
PDF
导出引用
  • 单只磁控管输出功率不能满足大规模工业应用, 需要对多只磁控管进行相干功率合成. 为解决普通磁控管相干功率合成所需的相位一致性, 需要对普通磁控管引入注入锁频技术, 以保障工作频率和相位差的稳定性. 本文在阻抗匹配的条件下, 结合磁控管稳定振荡的条件, 从等效电路的角度出发对磁控管注入锁频原理进行分析, 给出了在小注入比和大注入比情况下磁控管的注入锁频理论, 大注入比情况比小注入比情况给出了更大的锁频带宽. 采用MATLAB对理论方程进行解析求解, 同时通过三维粒子仿真软件对锁频理论进行了对比验证, 得出了在不同注入比下磁控管的锁频带宽和相位差微分方程, 给出了在不同初始相位下的相位差变化曲线, 得到了A6磁控管在自由振荡和注入锁频工作下三维模拟仿真的输出功率、频率和波形. 模拟结果表明, 在两种情形预测的锁频带宽内, 磁控管均能被锁定并稳定工作, 在大注入比下大注入比情况比小注入比情况更为准确.
    Coherent power-combining by using several magnetrons is essential because the output power of one single magnetron cannot meet the need of large-scale industrial applications. In order to obtain phase coherence condition of the power-combining of normal magnetrons, injection-locking technology should be adopted to make sure the stability of the operating frequency and phase difference. Under impedance matching conditions, equivalent circuit of injection-locked magnetron is analyzed with the conditions of the magnetron stable frequency. The small injection-ratio and large injection-ratio situations of the injection-locked magnetrons are both derived. Furthermore, large injection-ratio situation indicates a greater frequency-locked bandwidth than small injection-ratio situation. Theoretical results are analyzed by MATLAB and injection-locked theory is verified by three-dimensional particle-in-cell simulation. The frequency-locked bandwidth and phase differential equation are given and curves of the phase difference are drawn for different initial phases. Output power and frequency of A6 magnetron are obtained by simulation under both free and injection-locked oscillation conditions. Simulation results show that magnetron can be locked and working stably in frequency-locked bandwidth predicted by both situations. Moreover, in the large injection ratio status the large injection-ratio situation is more accurate than the small injection-ratio situation.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2013CB328901)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328901).
    [1]

    Adler R 1946 Proc. Ire. 34 6

    [2]

    Slater J C 1950 Microwave Electronics (New York: Van Nostrand) pp205-210

    [3]

    David E E 1952 Proc. Ire. 40 6

    [4]

    David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York and London: Academic Press) P375

    [5]

    Behzad Razavi 2004 IEEE J. Solid-State Circuits 39 9

    [6]

    Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R, Sze H 1988 J. Appl. Phys. 65 2

    [7]

    Benford J, Sze H, Woo W, Smith R R, Harteneck B 1989 Phys. Rev. Lett. 62 8

    [8]

    Henry S, Smith R R, Benford J N, Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 3

    [9]

    Treado T A, Brown P D, HansenT A, Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 5

    [10]

    Zhu X Y, Jen L, Liu Q X, Du X S 1996 Rev. Sci. Instrum. 67 5

    [11]

    Zhang Z T 1981 Principles of Microwave Tubes (Beijing: National Defence Industry Press) p105 (in Chinese) [张兆镗 1981 微波电子管原理 (北京: 国防工业出版社) 第105页]

    [12]

    Deng X l, Liu Y G, Li W 2010 Journal of Microwaves 26 Supplement (in Chinese) [邓小龙, 刘永贵, 李伟 2010 微波学报 26 增刊]

    [13]

    Chen X, Esterson M, Lindsay P A 1996 SPIE 2843 47

    [14]

    Kim J I, Won J H, Ha H J, Shon J C, Park G S 2004 IEEE Trans.Plasma Sci. 32 5

    [15]

    Bruce G, Larry L, David S, Gary W 1995 Computer Physics Communications 87 1

  • [1]

    Adler R 1946 Proc. Ire. 34 6

    [2]

    Slater J C 1950 Microwave Electronics (New York: Van Nostrand) pp205-210

    [3]

    David E E 1952 Proc. Ire. 40 6

    [4]

    David E E 1961 Crossed Field Microwave Devices (Vol. 2) (New York and London: Academic Press) P375

    [5]

    Behzad Razavi 2004 IEEE J. Solid-State Circuits 39 9

    [6]

    Woo W, Benford J, Fittinghoff D, Harteneck B, Price D, Smith R, Sze H 1988 J. Appl. Phys. 65 2

    [7]

    Benford J, Sze H, Woo W, Smith R R, Harteneck B 1989 Phys. Rev. Lett. 62 8

    [8]

    Henry S, Smith R R, Benford J N, Harteneck B D 1992 IEEE Trans. Electromagn. Compat. 34 3

    [9]

    Treado T A, Brown P D, HansenT A, Aiguier D J 1994 IEEE Trans. Plasma Sci. 22 5

    [10]

    Zhu X Y, Jen L, Liu Q X, Du X S 1996 Rev. Sci. Instrum. 67 5

    [11]

    Zhang Z T 1981 Principles of Microwave Tubes (Beijing: National Defence Industry Press) p105 (in Chinese) [张兆镗 1981 微波电子管原理 (北京: 国防工业出版社) 第105页]

    [12]

    Deng X l, Liu Y G, Li W 2010 Journal of Microwaves 26 Supplement (in Chinese) [邓小龙, 刘永贵, 李伟 2010 微波学报 26 增刊]

    [13]

    Chen X, Esterson M, Lindsay P A 1996 SPIE 2843 47

    [14]

    Kim J I, Won J H, Ha H J, Shon J C, Park G S 2004 IEEE Trans.Plasma Sci. 32 5

    [15]

    Bruce G, Larry L, David S, Gary W 1995 Computer Physics Communications 87 1

计量
  • 文章访问数:  5257
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-16
  • 修回日期:  2013-05-24
  • 刊出日期:  2013-09-05

/

返回文章
返回