搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字显微全息中记录参数对颗粒测量影响的数值模拟

周斌武 吴学成 吴迎春 阳静 Gérard Gréhan 岑可法

引用本文:
Citation:

数字显微全息中记录参数对颗粒测量影响的数值模拟

周斌武, 吴学成, 吴迎春, 阳静, Gérard Gréhan, 岑可法

Influence of recording parameters on particle field measurement by digital holographic microscopy:a numerical investigation

Zhou Bin-Wu, Wu Xue-Cheng, Wu Ying-Chun, Yang Jing, Gérard Gréhan, Cen Ke-Fa
PDF
导出引用
  • 数字显微全息技术由于具有三维、非接触和实时测量微小空间内流场的能力, 已引起了国内外学者的广泛关注. 利用数字显微全息方法测量微通道流场时, 记录距离、颗粒尺寸、颗粒浓度、入射光波长、CCD分辨率等参数会对颗粒重建结果产生重要影响. 为了评估颗粒浓度和样本空间深度对重建结果的影响, 本文开展了数值模拟研究. 采用基于洛伦兹-米散射理论的程序产生不同浓度的颗粒全息图, 用小波变换重建算法对其进行重建. 结果表明: 在样本空间深度为24 μm 时, 颗粒浓度ns在3.44×105 mm-3–13.77×105 mm-3 范围内时, 颗粒重建率Ep随着颗粒浓度ns 的增大而迅速减小, 在13.77×105 mm-3–55.08×105 mm-3范围内时, 颗粒重建率Ep 随颗粒浓度ns增大而缓慢减少. 在颗粒浓度ns (13.77×105 mm-3) 保持不变时, 颗粒重建率Ep与样本空间深度满足单调递减的线性关系. 当阴影密度不变时, 重建率的变化呈现一定的规律性:当深度L较小时, 样本空间深度对颗粒重建的影响要比颗粒浓度的影响大; 当深度L较大时, 颗粒浓度对颗粒重建的影响较大.
    Digital holographic microscopy plays a key role in micro-fluid measurement,and appears to be a strong contender as the next-generation technology for diagnostics of three-dimensional (3D) particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. In this paper, we numerically investigate the effects of particle concentration and the volume depth on reconstruction efficiency, to evaluate the capability of digital holographic microscopy. Standard particle holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that on the premise that the value of volume depth is 24 μm, the reconstruction efficiency Ep decreases quickly until particle concentration reaches 6.89×105 mm-3, and decreases slowly with the increase of particle concentration from 6.89×105 mm-3 to 55.08×105 mm-3. And on the premise that the value of particle concentration is 13.77×105 mm-3, the reconstruction efficiency Ep decreases linearly with the increase of the volume depth. When shadow density is constant, the variance of the construction efficiency presents a certain regularity. When the volume depth is small, the effect of particle concentration on the reconstruction efficiency becomes larger than one of volume depth, while it comes to a completely opposite result with a larger volume depth.
    • 基金项目: 国家自然科学基金(批准号: 51176162)和高等学校学科创新引智计划(批准号: B08026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176162) and the Program of Introducing Talents of Discipline to Universities of China (Grant No. B08026).
    [1]

    Tanner D 2009 Microelectron. Reliab. 49 937

    [2]

    Shi S, Chen D P, Jing Y P, Ou Y, Ye T C, Xu Q X 2010 Chin. Phys. B 19 76802

    [3]

    Potrich C, Lunelli L, Forti S, Vozzi D, Pasquardini L, Vanzetti L, Panciatichi C, Anderle M, Pederzolli C 2010 Eur. Biophys. J. Biophy. 39 979

    [4]

    Yao S, Tang X, Hsieh C, Alyousef Y, Vladimer M, Fedder G K, Amon C H 2006 Energy 31 636

    [5]

    Langehanenberg P, Kemper B, Dirksen D, von Bally G 2008 Appl. Opt. 47 D176

    [6]

    Mir T A, Shinohara H 2012 Anal. Biochem. 429 53

    [7]

    Whalen S, Thompson M, Bahr D, Richards C, Richards R 2003 Sensor. Actuat. A Phys. 104 290

    [8]

    Do K H, Jang S P 2010 Int. J. Heat Mass Trans. 53 2183

    [9]

    Cai W, Wang F, van Veen A, Descorme C, Schuurman Y, Shen W, Mirodatos C 2010 Int. J. Hydrogen Energ. 35 1152

    [10]

    Park J S, Choi C K, Kihm K D 2004 Exp. Fluids 37 105

    [11]

    Elsinga G, Westerweel J, Scarano F, Novara M 2011 Exp. Fluids 50 825

    [12]

    Wu Y C, Wu X C, Wang Z H, Chen L H, Cen K F 2011 Appl. Opt. 50 H22

    [13]

    Garcia-Sucerquia J, Xu W, Jericho S K, Klages P, Jericho M H, Kreuzer H J 2006 Appl. Opt. 45 836

    [14]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [15]

    Ferraro P, Coppola G, De Nicola S, Finizio A, Pierattini G 2003 Opt. Lett. 28 1257

    [16]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [17]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 物理学报 62 054208]

    [18]

    Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207]

    [19]

    Kim S, Lee S J 2007 J Micromech. Microeng. 17 2157

    [20]

    Satake S I, Kunugi T, Sato K, Ito T, Kanamori H, Taniguchi J 2006 Meas. Sci. Technol. 17 1647

    [21]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [22]

    Cao L, Pan G, De Jong J, Woodward S, Meng H 2008 Appl. Opt. 47 4501

    [23]

    Pan G, Meng H 2003 Appl. Opt. 42 827

    [24]

    Fugal J, Shaw R 2009 Atmos. Meas. Tech. 2 259

    [25]

    Yang Y, Li G, Tang L, Huang L 2012 Appl. Opt. 51 255

    [26]

    Malek M, Allano D, Coëtmellec S, Zkul C, Lebrun D 2004 Meas. Sci. Technol. 15 699

    [27]

    Meng H, Anderson W, Hussain F, Liu D D 1993 J. Opt. Soc. Am. A 10 2046

    [28]

    Royer H 1974 Nouvelle Revued Optique 5 87

    [29]

    Malek M, Allano D, Coëtmellec S, Lebrun D 2004 Opt. Express 12 2270

    [30]

    Zhang Y, Shen G, Schroder A, Kompenhans J 2006 Opt. Eng. 45 075801

    [31]

    Singh D K, Panigrahi P 2012 Appl. Opt. 51 3874

    [32]

    Restrepo J F, Garcia-Sucerquia J 2013 Appl. Opt. 52 A310

    [33]

    Natan T, Shaked, Joseph R, Adrian S 2007 Opt. Express 15 5754

    [34]

    Kumar Nishchal N, Joseph J, Singh K 2004 Opt. Commun. 235 253

    [35]

    Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Zkul C 2000 Opt. Laser Eng. 33 409

    [36]

    Anderson W, Diao H 1995 Appl. Opt. 34 249

    [37]

    Lebrun D, Belaïd S, Zkul C 1999 Appl. Opt. 38 3730

    [38]

    Wu X C, Meunier-Guttin-Cluzel S, Wu Y C, Saengkaew S, Lebrun D, Brunel M, Chen L H, Coetmellec S, Cen K F, Grehan G 2012 Opt. Commun. 285 3013

    [39]

    Pu S L, Allano D, Patte-Rouland B, Malek M, Lebrun D, Cen K F 2005 Exp. Fluids 39 1

  • [1]

    Tanner D 2009 Microelectron. Reliab. 49 937

    [2]

    Shi S, Chen D P, Jing Y P, Ou Y, Ye T C, Xu Q X 2010 Chin. Phys. B 19 76802

    [3]

    Potrich C, Lunelli L, Forti S, Vozzi D, Pasquardini L, Vanzetti L, Panciatichi C, Anderle M, Pederzolli C 2010 Eur. Biophys. J. Biophy. 39 979

    [4]

    Yao S, Tang X, Hsieh C, Alyousef Y, Vladimer M, Fedder G K, Amon C H 2006 Energy 31 636

    [5]

    Langehanenberg P, Kemper B, Dirksen D, von Bally G 2008 Appl. Opt. 47 D176

    [6]

    Mir T A, Shinohara H 2012 Anal. Biochem. 429 53

    [7]

    Whalen S, Thompson M, Bahr D, Richards C, Richards R 2003 Sensor. Actuat. A Phys. 104 290

    [8]

    Do K H, Jang S P 2010 Int. J. Heat Mass Trans. 53 2183

    [9]

    Cai W, Wang F, van Veen A, Descorme C, Schuurman Y, Shen W, Mirodatos C 2010 Int. J. Hydrogen Energ. 35 1152

    [10]

    Park J S, Choi C K, Kihm K D 2004 Exp. Fluids 37 105

    [11]

    Elsinga G, Westerweel J, Scarano F, Novara M 2011 Exp. Fluids 50 825

    [12]

    Wu Y C, Wu X C, Wang Z H, Chen L H, Cen K F 2011 Appl. Opt. 50 H22

    [13]

    Garcia-Sucerquia J, Xu W, Jericho S K, Klages P, Jericho M H, Kreuzer H J 2006 Appl. Opt. 45 836

    [14]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [15]

    Ferraro P, Coppola G, De Nicola S, Finizio A, Pierattini G 2003 Opt. Lett. 28 1257

    [16]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Gai Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [17]

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 054208 (in Chinese) [王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强 2013 物理学报 62 054208]

    [18]

    Wang H Y, Liu F F, Song X F, Liao W, Zhao B Q, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207 (in Chinese) [王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207]

    [19]

    Kim S, Lee S J 2007 J Micromech. Microeng. 17 2157

    [20]

    Satake S I, Kunugi T, Sato K, Ito T, Kanamori H, Taniguchi J 2006 Meas. Sci. Technol. 17 1647

    [21]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [22]

    Cao L, Pan G, De Jong J, Woodward S, Meng H 2008 Appl. Opt. 47 4501

    [23]

    Pan G, Meng H 2003 Appl. Opt. 42 827

    [24]

    Fugal J, Shaw R 2009 Atmos. Meas. Tech. 2 259

    [25]

    Yang Y, Li G, Tang L, Huang L 2012 Appl. Opt. 51 255

    [26]

    Malek M, Allano D, Coëtmellec S, Zkul C, Lebrun D 2004 Meas. Sci. Technol. 15 699

    [27]

    Meng H, Anderson W, Hussain F, Liu D D 1993 J. Opt. Soc. Am. A 10 2046

    [28]

    Royer H 1974 Nouvelle Revued Optique 5 87

    [29]

    Malek M, Allano D, Coëtmellec S, Lebrun D 2004 Opt. Express 12 2270

    [30]

    Zhang Y, Shen G, Schroder A, Kompenhans J 2006 Opt. Eng. 45 075801

    [31]

    Singh D K, Panigrahi P 2012 Appl. Opt. 51 3874

    [32]

    Restrepo J F, Garcia-Sucerquia J 2013 Appl. Opt. 52 A310

    [33]

    Natan T, Shaked, Joseph R, Adrian S 2007 Opt. Express 15 5754

    [34]

    Kumar Nishchal N, Joseph J, Singh K 2004 Opt. Commun. 235 253

    [35]

    Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Zkul C 2000 Opt. Laser Eng. 33 409

    [36]

    Anderson W, Diao H 1995 Appl. Opt. 34 249

    [37]

    Lebrun D, Belaïd S, Zkul C 1999 Appl. Opt. 38 3730

    [38]

    Wu X C, Meunier-Guttin-Cluzel S, Wu Y C, Saengkaew S, Lebrun D, Brunel M, Chen L H, Coetmellec S, Cen K F, Grehan G 2012 Opt. Commun. 285 3013

    [39]

    Pu S L, Allano D, Patte-Rouland B, Malek M, Lebrun D, Cen K F 2005 Exp. Fluids 39 1

  • [1] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议. 物理学报, 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [2] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [3] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [4] 周龙峰, 张昂, 张俊波, 樊新龙, 魏凌, 陈善球, 鲜浩. 基于成像清晰度函数的非球面反射镜位置校正实验研究. 物理学报, 2016, 65(13): 139501. doi: 10.7498/aps.65.139501
    [5] 阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法. 数字显微全息重建图像的景深扩展研究. 物理学报, 2015, 64(11): 114209. doi: 10.7498/aps.64.114209
    [6] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [7] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术. 物理学报, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [8] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [9] 吴迎春, 吴学成, Sawitree Saengkaew, 姜淏予, 洪巧巧, Gérard Gréhan, 岑可法. 全场彩虹技术测量喷雾浓度及粒径分布. 物理学报, 2013, 62(9): 090703. doi: 10.7498/aps.62.090703
    [10] 任洪亮. 有限远共轭显微镜光镊设计和误差分析. 物理学报, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [11] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统. 物理学报, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [12] 杨锦辉, 宋君强. 混沌系统模型误差平均绝对误差增长过程研究. 物理学报, 2012, 61(22): 220510. doi: 10.7498/aps.61.220510
    [13] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [14] 吴宝嘉, 韩永昊, 彭刚, 金逢锡, 顾广瑞, 高春晓. 金刚石对顶砧中触点位置误差对样品电阻率测量精度的影响(已撤稿). 物理学报, 2011, 60(12): 127203. doi: 10.7498/aps.60.127203
    [15] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [16] 崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳. 无透镜傅里叶变换数字全息术中非共面误差的自动补偿算法. 物理学报, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [17] 盛利元, 贾伟尧. 一个截断误差诱导下的随机数字振荡系统. 物理学报, 2005, 54(12): 5574-5580. doi: 10.7498/aps.54.5574
    [18] 曾小东, 梁昌洪, 安毓英. 小尺寸平面源的误差分析. 物理学报, 1997, 46(9): 1665-1669. doi: 10.7498/aps.46.1665
    [19] 常明, 许守廉. Voigt函数法的误差分析. 物理学报, 1993, 42(3): 446-452. doi: 10.7498/aps.42.446
    [20] 秦克诚. 斑纹噪声相乘模型的误差. 物理学报, 1983, 32(2): 267-272. doi: 10.7498/aps.32.267
计量
  • 文章访问数:  4519
  • PDF下载量:  503
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-12
  • 修回日期:  2013-07-06
  • 刊出日期:  2013-10-05

/

返回文章
返回