搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器

李辉栋 傅海威 邵敏 赵娜 乔学光 刘颖刚 李岩 闫旭

引用本文:
Citation:

基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器

李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭

In-fiber Mach-Zehnder interferometer based on fiber core etched air-bubble and core diameter mismatch for liquid refractive index sensing

Li Hui-Dong, Fu Hai-Wei, Shao Min, Zhao Na, Qiao Xue-Guang, Liu Ying-Gang, Li Yan, Yan Xu
PDF
导出引用
  • 介绍了一种基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 将两根纤芯经过腐蚀的普通单模光纤熔接在一起, 在熔接点处形成一个气泡, 在距气泡20 mm处级联一段20 mm的细芯光纤, 再接入一段单模光纤, 形成单模光纤-气泡-单模光纤-细芯光纤-单模光纤结构的传感器. 气泡与光纤芯径失配处的两个节点起到光纤耦合器的作用, 从而形成光纤Mach-Zehnder干涉仪. 环境液体折射率的变化,将使得传感器透射谱能量发生变化, 通过测量干涉谱波峰峰值能量从而实现对折射率的测量. 并对所制作传感器的折射率响应特性进行了实验研究, 实验结果表明干涉谱波峰峰值能量与环境液体折射率之间存在良好的线性关系, 当环境液体折射率变化范围在1.3511.402时, 响应灵敏度为143.537 dB/RIU, 线性度0.996. 该传感器在生物化学领域有较好的应用前景.
    A kind of optical fiber liquid refractive index sensor is proposed based on fiber core etched air-bubble and core diameter mismatched in-fiber Mach-Zehnder interferometer. A core etched standard single-mode fiber is spliced to another core etched standard single-mode fiber (SMF) to form an air bubble at the connecting point, and a 20 mm thinned fiber is cascaded (TCF) by fusion splicing method, which is 20 mm apart from the bubble, then a leading-mode fiber is spliced to the thinned fiber to form a structure of SMF-(air-bubble)-SMF-TCF-SMF in-fiber Mach-Zehnder interferometer liquid refractive index sensor. The air-bubble and the two fiber core diameter mismatched points serve as optical couplers for modes conversion. The transmission spectrum of sensor is studied by experiment. Results shows that the peak power changes with respect to surrounding refractive index with good linearity. The sensitivity of the sensor is 142.537 dB/RIU in the range of 1.3511.402 with linearity of 0.996, making it a good candidate for bio-chemical measurements.
    • 基金项目: 国家自然科学基金(批准号: F050304, F0502, 61240028)、国家高技术研究发展计划 (863计划) (批准号: 2009AA06Z203)、陕西省教育厅重点实验室科研计划项目 (批准号: 12JS077) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. F050304, F0502, 61240028), the National High Technology Research and Development Program of China (Grant No. 2009AA06Z203), and the Research Foundation of Education Bureau of Shaanxi Province, China (Grant No. 12JS077).
    [1]

    Tian Z B, Yam S S H, Loock H P 2008 Optics letters 33 1105

    [2]

    Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 ActaPhys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 物理学报 60 064202]

    [3]

    Nguyen L V, Vasiliev M, Alameh K 2011 IEEE Photonics Technology Letters 23 450

    [4]

    Yin Z H, Zhang X B, Liu Y Q, Pang F F, Wang T Y 2012 APC Technical Digest OSA: AF4A.72.pdf

    [5]

    Rindorf L H, Jensen J B, Dufva H M 2006 Optics Express 14 8224

    [6]

    Fan Y, Zhu T, Shi L 2011 Applied Optics 50 4604

    [7]

    Cao Y, Yang Y F, Yang X F, Tong Z R 2012 Chinese Optics Letters 10 030605

    [8]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 ActaPhys.Sin.60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 物理学报 60 104221]

    [9]

    Reeves R, Webb D J, Bennion I, Neal R 2002 Review of Scientific Instruments 73 1702

    [10]

    Tian Z B, Yam S S H, Barnes J, Bock W 2008 IEEE Photonics Technology Letters 20 626

    [11]

    Xia T H, Zhang A P, Gu B B, Zhu J J 2010 Optics Communications 283 2136

    [12]

    Li L C, Xia L, Xie Z H, Liu D M 2012 Optics Express 20 11109

    [13]

    Rong Q Z, Qiao X G, Wang R H, Sun H, Hu M L, Feng Z Y 2012 IEEE Sensors Journal12 2501

    [14]

    Qiu S J, Chen Y, Kou J L, Xu F, Lu Y Q 2011 Applied Optics 50 4328

    [15]

    Ma Y, Qiao X G, Guo T, Wang R H, Zhang J, Weng Y Y, Feng Z Y 2012 Optics Letters 37 323

    [16]

    Guo Y 2010 MS Dissertation (chengdu: University of Electronic Science And Technology of China) (in Chinese) [郭宇 2010 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Villatoro J, Monzón-Hernández D, 2006 IEEE. Journal of Lightwave Technology 24 1409

    [18]

    Harris J, Lu P, Larocque H, Xu Y P, Chen L, Bao X Y 2013 Optics Express 21 9996

    [19]

    Zhu J J, Zhang A P, Xia T H, He S L, Xue W 2010 IEEE Sensors Journal 10 1415

    [20]

    Pang F F, Liu H H, Guo H R, Liu Y Q, Zeng X L, Chen N, Chen Z Y, Wang T Y 2011 IEEE Sensors Journal 11 2395

  • [1]

    Tian Z B, Yam S S H, Loock H P 2008 Optics letters 33 1105

    [2]

    Gong Y, Guo Y, Rao Y J, Zhao T, Wu Y, Ran Z L 2011 ActaPhys. Sin. 60 064202 (in Chinese) [龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令 2011 物理学报 60 064202]

    [3]

    Nguyen L V, Vasiliev M, Alameh K 2011 IEEE Photonics Technology Letters 23 450

    [4]

    Yin Z H, Zhang X B, Liu Y Q, Pang F F, Wang T Y 2012 APC Technical Digest OSA: AF4A.72.pdf

    [5]

    Rindorf L H, Jensen J B, Dufva H M 2006 Optics Express 14 8224

    [6]

    Fan Y, Zhu T, Shi L 2011 Applied Optics 50 4604

    [7]

    Cao Y, Yang Y F, Yang X F, Tong Z R 2012 Chinese Optics Letters 10 030605

    [8]

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 ActaPhys.Sin.60 104221 (in Chinese) [梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 物理学报 60 104221]

    [9]

    Reeves R, Webb D J, Bennion I, Neal R 2002 Review of Scientific Instruments 73 1702

    [10]

    Tian Z B, Yam S S H, Barnes J, Bock W 2008 IEEE Photonics Technology Letters 20 626

    [11]

    Xia T H, Zhang A P, Gu B B, Zhu J J 2010 Optics Communications 283 2136

    [12]

    Li L C, Xia L, Xie Z H, Liu D M 2012 Optics Express 20 11109

    [13]

    Rong Q Z, Qiao X G, Wang R H, Sun H, Hu M L, Feng Z Y 2012 IEEE Sensors Journal12 2501

    [14]

    Qiu S J, Chen Y, Kou J L, Xu F, Lu Y Q 2011 Applied Optics 50 4328

    [15]

    Ma Y, Qiao X G, Guo T, Wang R H, Zhang J, Weng Y Y, Feng Z Y 2012 Optics Letters 37 323

    [16]

    Guo Y 2010 MS Dissertation (chengdu: University of Electronic Science And Technology of China) (in Chinese) [郭宇 2010 硕士学位论文 (成都: 电子科技大学)]

    [17]

    Villatoro J, Monzón-Hernández D, 2006 IEEE. Journal of Lightwave Technology 24 1409

    [18]

    Harris J, Lu P, Larocque H, Xu Y P, Chen L, Bao X Y 2013 Optics Express 21 9996

    [19]

    Zhu J J, Zhang A P, Xia T H, He S L, Xue W 2010 IEEE Sensors Journal 10 1415

    [20]

    Pang F F, Liu H H, Guo H R, Liu Y Q, Zeng X L, Chen N, Chen Z Y, Wang T Y 2011 IEEE Sensors Journal 11 2395

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 张伟, 万静, 蒙列, 罗曜伟, 郭明瑞. D型光纤与微管耦合的微流控折射率传感器. 物理学报, 2022, 71(21): 210701. doi: 10.7498/aps.71.20221137
    [4] 孙家程, 王婷婷, 戴洋, 常建华, 柯炜. 基于无芯光纤的多参数测量传感器. 物理学报, 2021, 70(6): 064202. doi: 10.7498/aps.70.20201474
    [5] 孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸. 具有内参考热补偿功能的三层膜结构微球腔折射率传感器. 物理学报, 2020, 69(1): 014203. doi: 10.7498/aps.69.20191265
    [6] 傅双双, 骆顺龙, 孙源. 相干与信息守恒及其在Mach-Zehnder干涉中的应用. 物理学报, 2019, 68(3): 030301. doi: 10.7498/aps.68.20181778
    [7] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器. 物理学报, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [8] 李杰, 李蒙蒙, 孙立朋, 范鹏程, 冉洋, 金龙, 关柏鸥. 保偏微纳光纤倏逝场传感器. 物理学报, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [9] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [10] 郑晶晶, 简水生, 马林, 柏云龙, 裴丽, 宁提纲, 闻映红. 具有大范围高分辨率线性响应特性的超短无芯光纤溶液折射率传感器. 物理学报, 2013, 62(15): 150703. doi: 10.7498/aps.62.150703
    [11] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [12] 周仁来, 鞠有伦, 杨超, 王巍, 王月珠. 一种对双包层大芯径光纤光栅反射率和纤芯折射率调制估算的方法. 物理学报, 2012, 61(24): 244205. doi: 10.7498/aps.61.244205
    [13] 殷丽梅, 张伟刚, 薛晓琳, 白志勇, 魏石磊. 飞秒激光刻蚀非平行壁光纤微腔Mach-Zehnder干涉仪特性及其流体传感研究. 物理学报, 2012, 61(17): 170701. doi: 10.7498/aps.61.170701
    [14] 程同蕾, 柴路, 栗岩锋, 胡明列, 王清月. 混合导引型光子晶体光纤中纤芯折射率相关的导光特性研究. 物理学报, 2011, 60(2): 024216. doi: 10.7498/aps.60.024216
    [15] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [16] 梁瑞冰, 孙琪真, 沃江海, 刘德明. 微纳尺度光纤布拉格光栅折射率传感的理论研究. 物理学报, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [17] 郑力明, 王发强, 刘颂豪. 光声互作用模型中的Pancharatnam相位. 物理学报, 2009, 58(5): 2884-2888. doi: 10.7498/aps.58.2884
    [18] 商娅娜, 王 东, 闫智辉, 王文哲, 贾晓军, 彭堃墀. 利用非平衡光纤Mach-Zehnder干涉仪探测频率非简并纠缠态光场. 物理学报, 2008, 57(6): 3514-3518. doi: 10.7498/aps.57.3514
    [19] 郑无敌, 张国平, 王 琛, 孙今人, 方智恒, 顾 援, 傅思祖. 用X射线激光M-Z干涉仪诊断点聚焦CH等离子体电子密度. 物理学报, 2007, 56(7): 3984-3989. doi: 10.7498/aps.56.3984
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  6680
  • PDF下载量:  783
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-15
  • 修回日期:  2013-06-24
  • 刊出日期:  2013-11-05

/

返回文章
返回