搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全光型石英增强光声光谱

刘研研 董磊 武红鹏 郑华丹 马维光 张雷 尹王保 贾锁堂

引用本文:
Citation:

全光型石英增强光声光谱

刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂

All optical quartz-enhanced photoacoustic spectroscopy

Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang
PDF
导出引用
  • 设计并演示了一种全光型石英增强光声光谱技术, 该技术在传统的石英增强光声光谱系统中增加了另一束探测光束, 把与气体浓度成正比的石英晶振振臂的振动幅值转化为探测光束的强度变化, 实现了探测气体处无电子元件的全光学系统. 如此的设计使该系统具有较强的抗电磁干扰能力和非常小的传感头体积, 能够用于探测空间受限或探测环境恶劣的情况下, 并实现远距离探测. 在这种配置下, 探测大气压下的水汽, 获得的噪声等效吸收系数为1.13×10-6 cm-1W/√Hz. 进一步讨论了优化系统和提升其探测灵敏度的途径.
    A trace gas sensor based on all optical quartz-enhanced photoacoustic spectroscopy (QEPAS) is designed and demonstrated. An extra detection light beam is added to the traditional QEPAS setup to convert the amplitude of vibration of the quartz tuning fork, which is proportional to the concentration of the target gas, into the variation of the detection light intensity. As a result, there are not any electrical components near the measurement position. Such a design makes it immune to electromagnetic interference and provides a compact sensor head, which can be used in a tiny space or an adverse environment. Using the new setup to measure the water concentration in air, the obtained noise equivalent absorption coefficient is 1.13×10-6 cm-1W/√Hz. The approaches to further optimizing the system and improving the sensitivity are also discussed in detail.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61275213, 61108030, 61127017, 61178009, 60908019, 61205216)、山西省青年科学基金(批准号: 2013021004-1, 2010021003-3, 2012021022-1)、山西省回国留学人员科研资助项目(批准号: 2013-011)和山西省留学回国人员科技活动资金(批准号: 2013-01)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61275213, 61108030, 61127017, 61178009, 60908019, 61205216), the Shanxi Natural Science Foundation, China (Grant Nos. 2013021004-1, 2010021003-3, 2012021022-1), the Shanxi Scholarship Council of China (Grant No. 2013-011), and the Science and Technology Activities Foundation of Returned Overseas Chinese Scholars in Shanxi Province, China (Grant No. 2013-01).
    [1]

    Khorsandi A, Shabani Z, Ranjbar M, Salati H 2012 Chin. Phys. B 21 064213

    [2]

    Kan R F, Dong F Z, Zhang Y J, Liu J G, Wang M, Gao S H, Chen J, Liu C 2005 Chin. Phys. B 14 1904

    [3]

    Dong L, Zhang L, Dou H P, Yin W B, Jia S T 2008 Chin. Phys. B 17 0152

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Liu K, Guo X, Yi H, Chen W, Zhang W, Gao X 2009 Opt. Lett. 34 1594

    [6]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [7]

    Wang G S, Yi H M, Cai T D, Wang L, Tan T, Zhang W J, Gao X M 2012 Acta Phys. Sin. 61 120701 (in Chinese) [王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明 2012 物理学报 61 120701]

    [8]

    Dong L, Lewicki R, Liu K, Buerki P R, Weida M J, Tittel F K 2012 Appl. Phys. B 107 275

    [9]

    Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, Mcwhorter S 2012 Appl. Phys. B 107 459

    [10]

    Dong L, Spagnolo Vm Lewicki R, Tittel F K 2011 Opt. Express 19 24037

    [11]

    Sharma R C, Kumar D, Bhardwaj N, Gupta S, Chandra H, Maini A K 2013 Opt. Commun. 309 44

    [12]

    Pohlkötter A, Willer U, Bauer C, Schade W 2009 Appl. Opt. 48 B119

    [13]

    An L S, Li L, Li Q C 2002 Applied Optics (Beijing: Beijing Institute of Technology Press) p3 (in Chinese) [安连生, 李林, 李全臣 2002 应用光学(北京: 北京理工大学出版社)第3页]

    [14]

    Liang Y Y, Yang G G 2004 Opt. Instrum. 26 7 (in Chinese) [梁宜勇, 杨国光 2004 光学仪器 26 7]

    [15]

    Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 物理学报 62 070701]

  • [1]

    Khorsandi A, Shabani Z, Ranjbar M, Salati H 2012 Chin. Phys. B 21 064213

    [2]

    Kan R F, Dong F Z, Zhang Y J, Liu J G, Wang M, Gao S H, Chen J, Liu C 2005 Chin. Phys. B 14 1904

    [3]

    Dong L, Zhang L, Dou H P, Yin W B, Jia S T 2008 Chin. Phys. B 17 0152

    [4]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [5]

    Liu K, Guo X, Yi H, Chen W, Zhang W, Gao X 2009 Opt. Lett. 34 1594

    [6]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [7]

    Wang G S, Yi H M, Cai T D, Wang L, Tan T, Zhang W J, Gao X M 2012 Acta Phys. Sin. 61 120701 (in Chinese) [王贵师, 易红明, 蔡廷栋, 汪磊, 谈图, 张为俊, 高晓明 2012 物理学报 61 120701]

    [8]

    Dong L, Lewicki R, Liu K, Buerki P R, Weida M J, Tittel F K 2012 Appl. Phys. B 107 275

    [9]

    Dong L, Wright J, Peters B, Ferguson B A, Tittel F K, Mcwhorter S 2012 Appl. Phys. B 107 459

    [10]

    Dong L, Spagnolo Vm Lewicki R, Tittel F K 2011 Opt. Express 19 24037

    [11]

    Sharma R C, Kumar D, Bhardwaj N, Gupta S, Chandra H, Maini A K 2013 Opt. Commun. 309 44

    [12]

    Pohlkötter A, Willer U, Bauer C, Schade W 2009 Appl. Opt. 48 B119

    [13]

    An L S, Li L, Li Q C 2002 Applied Optics (Beijing: Beijing Institute of Technology Press) p3 (in Chinese) [安连生, 李林, 李全臣 2002 应用光学(北京: 北京理工大学出版社)第3页]

    [14]

    Liang Y Y, Yang G G 2004 Opt. Instrum. 26 7 (in Chinese) [梁宜勇, 杨国光 2004 光学仪器 26 7]

    [15]

    Wu H P, Dong L, Zheng H D, Liu Y Y, Ma W G, Zhang L, Wang W Y, Zhu Q K, Yin W B, Jia S T 2013 Acta Phys. Sin. 62 070701 (in Chinese) [武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂 2013 物理学报 62 070701]

计量
  • 文章访问数:  3128
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-08-20
  • 刊出日期:  2013-11-05

全光型石英增强光声光谱

  • 1. 量子光学与光量子器件国家重点实验室, 山西大学激光光谱研究所, 太原 030006
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61275213, 61108030, 61127017, 61178009, 60908019, 61205216)、山西省青年科学基金(批准号: 2013021004-1, 2010021003-3, 2012021022-1)、山西省回国留学人员科研资助项目(批准号: 2013-011)和山西省留学回国人员科技活动资金(批准号: 2013-01)资助的课题.

摘要: 设计并演示了一种全光型石英增强光声光谱技术, 该技术在传统的石英增强光声光谱系统中增加了另一束探测光束, 把与气体浓度成正比的石英晶振振臂的振动幅值转化为探测光束的强度变化, 实现了探测气体处无电子元件的全光学系统. 如此的设计使该系统具有较强的抗电磁干扰能力和非常小的传感头体积, 能够用于探测空间受限或探测环境恶劣的情况下, 并实现远距离探测. 在这种配置下, 探测大气压下的水汽, 获得的噪声等效吸收系数为1.13×10-6 cm-1W/√Hz. 进一步讨论了优化系统和提升其探测灵敏度的途径.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回