搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯-谢尔模光束在大气湍流中传输的相干特性研究

李成强 张合勇 王挺峰 刘立生 郭劲

引用本文:
Citation:

高斯-谢尔模光束在大气湍流中传输的相干特性研究

李成强, 张合勇, 王挺峰, 刘立生, 郭劲

Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence

Li Cheng-Qiang, Zhang He-Yong, Wang Ting-Feng, Liu Li-Sheng, Guo Jin
PDF
导出引用
  • 文章分析了高斯-谢尔光束在大气湍流中传输时相干长度的变化, 并与真空传输做比较, 真空传输相干长度的变化只与光源参数有关, 大气湍流中传输相干长度的变化受光源参数和湍流的共同影响. 真空传输光束扩展造成相干长度增大; 大气湍流中, 传输距离较短时, 相干长度由于光源扩展而增加, 当传输距离较大时, 湍流效应增强引起相干长度下降. 因此, 单纯从相干长度方面分析大气湍流带来的影响不够完备. 为排除光源扩展影响, 利用相干长度与光斑尺度的比值进行分析, 发现大气湍流会造成比值的下降. 在数值仿真的基础上对上述结果给出了解释.
    The change in coherence length of Gauss-Schell model beam propagating in atmospheric turbulence is studied by comparing with propagation in free space. The coherence length change only depends on source parameters in free space while its change in turbulence is governed by source parameters and turbulence. Beam spreading results in an increase in the coherence length in vacuum. For propagation in turbulence, the coherence length increases due to beam spreading over relatively short distance while decreases on account of the enhancement of turbulence over a sufficiently long distance. Thus, the simple analysis of the influence of turbulence on the coherence length is not mature enough. In order to exclude the effect of beam spreading, the ratio of coherence length to beam size is employed. It is found that atmospheric turbulence always leads to the decline of ratio. The explanations, based on numerical simulation, of above-mentioned results are given in this paper.
    • 基金项目: 国家自然科学基金(批准号: 61205143)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61205143).
    [1]

    Shirai T, Wolf E 2002 Opt. Commun. 204 25

    [2]

    Deschamps J, Courjon D, Bulabois J 1983 J. Opt. Soc. Am. 73 256

    [3]

    Jian W 1990 J. Mod. Opt. 37 671

    [4]

    Gase R 1991 J. Mod. Opt. 38 1107

    [5]

    Andrews L C 2005 Laser Beam Propagation through Random Media (Washington: SPIE) p67, pp500–510

    [6]

    Clifford S E, Gracheva M E, Ishimaru A 1978 Laser Beam Propagation in the Atmosphere (New York: Springer) pp129–168

    [7]

    Andrews L C 2001 Laser Beam Scintillation with Applications (Washington: SPIE) pp1–60

    [8]

    Collett E, Wolf E 1978 Opt. Lett. 2 27

    [9]

    Friberg A T, Sudol R J 1983 Opt. Acta: Int. J. Opt. 30 1075

    [10]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves in Random Media 14 513

    [11]

    Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [12]

    Cheng K, L B D 2009 Acta Phys. Sin. 58 250 (in Chinese) [程科, 吕百达 2009 物理学报 58 250]

    [13]

    Ji X L, Li X Q 2009 Acta Phys. Sin. 58 4624 (in Chinese) [季小玲, 李晓庆 2009 物理学报 58 4624]

    [14]

    L S Y, L B D 2009 Chin. Phys. B 18 3883

    [15]

    Wu J, Boardman A D 1991 J. Mod. Opt. 38 1355

    [16]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p279

    [17]

    Roychowdhury H, Ponomarenko S A, Wolf E 2005 J. Mod. Opt. 52 1611

    [18]

    L B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Beijing: Higher Education Press) p203 (in Chinese) [吕百达 2003 激光光学: 光束描述, 传输变换与光腔技术物理(北京: 高等教育出版社)第203页]

    [19]

    Born M, Wolf E 2005 Principles of Optics (Cambridge: Cambridge University Press) p564

    [20]

    Collett E, Wolf E 1980 Opt. Commun. 32 27

    [21]

    Foley J T, Zubairy M S 1978 Opt. Commun. 26 297

  • [1]

    Shirai T, Wolf E 2002 Opt. Commun. 204 25

    [2]

    Deschamps J, Courjon D, Bulabois J 1983 J. Opt. Soc. Am. 73 256

    [3]

    Jian W 1990 J. Mod. Opt. 37 671

    [4]

    Gase R 1991 J. Mod. Opt. 38 1107

    [5]

    Andrews L C 2005 Laser Beam Propagation through Random Media (Washington: SPIE) p67, pp500–510

    [6]

    Clifford S E, Gracheva M E, Ishimaru A 1978 Laser Beam Propagation in the Atmosphere (New York: Springer) pp129–168

    [7]

    Andrews L C 2001 Laser Beam Scintillation with Applications (Washington: SPIE) pp1–60

    [8]

    Collett E, Wolf E 1978 Opt. Lett. 2 27

    [9]

    Friberg A T, Sudol R J 1983 Opt. Acta: Int. J. Opt. 30 1075

    [10]

    Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves in Random Media 14 513

    [11]

    Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [12]

    Cheng K, L B D 2009 Acta Phys. Sin. 58 250 (in Chinese) [程科, 吕百达 2009 物理学报 58 250]

    [13]

    Ji X L, Li X Q 2009 Acta Phys. Sin. 58 4624 (in Chinese) [季小玲, 李晓庆 2009 物理学报 58 4624]

    [14]

    L S Y, L B D 2009 Chin. Phys. B 18 3883

    [15]

    Wu J, Boardman A D 1991 J. Mod. Opt. 38 1355

    [16]

    Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p279

    [17]

    Roychowdhury H, Ponomarenko S A, Wolf E 2005 J. Mod. Opt. 52 1611

    [18]

    L B D 2003 Laser Optics: Beam Characterization, Propagation and Transformation, Resonator Technology and Physics (Beijing: Higher Education Press) p203 (in Chinese) [吕百达 2003 激光光学: 光束描述, 传输变换与光腔技术物理(北京: 高等教育出版社)第203页]

    [19]

    Born M, Wolf E 2005 Principles of Optics (Cambridge: Cambridge University Press) p564

    [20]

    Collett E, Wolf E 1980 Opt. Commun. 32 27

    [21]

    Foley J T, Zubairy M S 1978 Opt. Commun. 26 297

计量
  • 文章访问数:  3105
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-29
  • 修回日期:  2013-08-23
  • 刊出日期:  2013-11-05

高斯-谢尔模光束在大气湍流中传输的相干特性研究

  • 1. 中国科学院长春光学精密机械与物理研究所, 激光与物质相互作用国家重点实验室, 长春 130033;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 国家自然科学基金(批准号: 61205143)资助的课题.

摘要: 文章分析了高斯-谢尔光束在大气湍流中传输时相干长度的变化, 并与真空传输做比较, 真空传输相干长度的变化只与光源参数有关, 大气湍流中传输相干长度的变化受光源参数和湍流的共同影响. 真空传输光束扩展造成相干长度增大; 大气湍流中, 传输距离较短时, 相干长度由于光源扩展而增加, 当传输距离较大时, 湍流效应增强引起相干长度下降. 因此, 单纯从相干长度方面分析大气湍流带来的影响不够完备. 为排除光源扩展影响, 利用相干长度与光斑尺度的比值进行分析, 发现大气湍流会造成比值的下降. 在数值仿真的基础上对上述结果给出了解释.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回